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1 Introduction to MMP
Lecture 1 (1 hour)
October 5th, 2010Let X, Y be projective varieties of dimension n; we say that X and Y are bira-

tional if there are Zariski open subschemes X0 ⊆ X and Y0 ⊆ Y with X0 ∼= Y0.
In dimension 1, birationality is equivalent to isomorphism. In dimension 2,

we have non-trivial birationality relations; for example, if we blow up a point
in a surface, than the surface we obtain is birational to the one we started with,
but they are not isomorphic.

The problem that the mmp tries to attack is, given a normal, projective
variety X, to find a minimal model, that is an Xmin birational to X such that
Xmin is as simple as possible.

∗s.maggiolo@gmail.com
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1. Introduction to MMP

1.1 Intuitive approach

A first tentative to solve this problem is the following: consider a partial order
in the set of varieties: X ≥ Y if and only if there exists a birational morphism
X → Y; then we define X to be minimal if X ≥ Y implies X ∼= Y.

This tentative definition has some problems.

1. Does the minimal model exist? Given X, how do we get Xmin?

2. Does this really give us a “simple” variety?

3. Do we have a criterion to know if X is minimal?

To explain the second problem, consider X := P(OP1 ⊕ OP1(−2)); this
is a P1-bundle over P1, with a (−2)-curve. This has a natural contraction
morphism to a quadric cone in P3, and this morphism is birational. Even if the
quadric cone is not a complicated object, this shows that birational morphisms
can go to variety that tends to go outside the category we are interested in,
namely algebraic varieties. Hence, this highlight that we have to limit the kind
of birational morphisms we use.

1.2 Classical approach

This approach is the classical one, developed by the Italian school and Castel-
nuovo in particular. More precisely, he gave the following.

1.1 definition. A smooth projective surface X is minimal if there are no (−1)-
curves in X.

This is a good criterion, also because it comes with an algorithm.

1.2 theorem. Let X be a smooth projective surface; if it contains a (−1)-curve C,
then there exists a smooth projective surface Y and a point p ∈ Y such that X = Blp Y
and C is the preimage of p via the blowing up morphism.

This theorem gives us the following algorithm:

1. start with a smooth projective surface X;

2. if X does not contain a (−1)-curve, X is minimal;

3. if X contains a (−1) curve, contracts it and substitute X with the new
surface;

4. go back to the starting point.

And the algorithm has an end because a blow up increase the Néron-
Severi number by 1, so the number of contraction we can do is bounded by
the Néron-Severi number of X.

Thanks to the following, it turns out that this approach is equivalent to the
intuitive one we explained before.
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1.3. Mmp approach

1.3 lemma. Let X be a smooth projective surface without (−1)-curves, and let
µ : X → Y be a birational morphism with Y smooth and projective. Then µ is an
isomorphism.

Proof. If µ is finite, then it is an isomorphism (result of Zariski). Hence, sup-
pose that µ is not finite; then it contracts curves C1, . . . , Cγ. Suppose that it
contracts just one curve C to a point p ∈ Y. Let Y′ := Blp(Y); the preim-
age of p in Y′ is a (−1)-curve E, and by the universal property of the blow
up, we have a morphism X → Y′; it is easy to prove that this is indeed an
isomorphism so C2 = E2 = −1.

Of course, by the example of the quadric cone we gave before, this lemma
fails when Y is singular.

1.3 Mmp approach

If L → X is a Cartier divisor, then L is said to be nef if L · C ≥ 0 for every
curve C. If X is a smooth projective surface, and C ⊆ X is a (−1)-curve, then
KX · C = −1, so KX is not nef. In other words, the nefness of KX is enough to
show that X is minimal in the sense of Castelnuovo.

This works in any dimension, as the following shows.

1.4 lemma. If X is smooth and projective, with KX nef, and µ : X → Y is a birational
morphism with X smooth and projective, then µ is an isomorphism.

The proof is essentially the same as before. Moreover, this lemma lead us
to the following.

1.5 definition. Let X be a smooth projective variety; then X is a minimal model
is KX is nef.

1.6 remark. This definition differs from Castelnuovo also in the surface case;
for example, the Hirzebruch surfaces have no minimal models in this sense,
because each smooth surface birational to them has KX which is not nef. The
solution to the problem of not having a minimal model for some variety is
solved using the following.

1.7 definition. We say that X is a Mori fiber space if there exists ϕ : X → Y
such that dim X > dim Y and KX |Xy is antiample for each y ∈ Y.

The aim of the mmp is then show that each variety has a minimal model,
or is a Mori fiber space. This is the algorithm we obtain, modulo proving a lot
of requirements:

1. start with X;

2. if KX is nef, then X is minimal and we finish;

3. if KX is not nef, then there exists a contraction ϕ : X → Y such that KX
restricted to the fibers of ϕ is antiample;
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2. Singularities of pairs

4. if dim X > dim Y, then X is a Mori fiber space and we finish;

5. if dim X = dim Y, then we replace X by Y and we start again.

1.8 example. Let X := P(OP2 ⊕OP2(−2)); this is a P1-bundle over P2 with
a KX-negative divisor E (i.e., KX |E ∼= OP2(−1); we can contract E with a
birational morphism µ : X → Y that contracts E to a point p. This shows that
the algorithm is not closed for the class of smooth and projective varieties.

This is a problem at least because to run the algorithm we need a variety
where the nefness of KX makes sense, i.e., we need at least that KX is Q-
Cartier. Hence, we need to modify the algorithm requiring at each step that
KX is Q-Cartier.

1.9 example. Let X ' P(OP2 ⊕OP2(−1)⊕2); this is a P2-bundle over P2, with
a surface S that can be contracted to a point p via a birational morphism
µ : X → Y. The problem is that KY is not Q-Cartier.

The idea is that to repair the problem created by the contraction morphism
using a flip: since we cannot continue with Y, we construct a variety X+ and a
morphism q+ : X+ → Y with Q-Cartier KX+ and KX+ ample on every fiber. So,
we modify again the algorithm: before replacing X by Y, we need to ensure
that KY is Q-Cartier; if it is not, then we have to make a flip and we replace X
by X+.

The real problem now is that we have to prove that all the requirements we
had in the diagrams holds, in particular the most important is the existence of
flips. This is in general not true for the class of varieties with K nef.

1.10 definition. Let X be a normal variety with KX Q-Cartier; X has terminal
singularities if for every birational morphism µ : Y → X, we have

(1) KY = µ?KX + ∑ aiEi

with ai > 0, where Ei ⊆ Y are the exceptional divisor.

This class is indeed stable under the mmp and contains the smooth vari-
eties. Moreover, it is the minimal class with these properties.

2 Singularities of pairs

Lecture 2 (1 hour)
October 6th, 2010 2.1 Why discrepancies

The discrepancies are the coefficients ai in Equation (1). They are a measure
of the singularities. Let us show this through some observations.

1. If X is a normal surface, then there exists a unique minimal resolution
µ : X′ → X with X′ smooth; moreover, KX′ = µ?KX + E, with E2 ≤ 0
(here we don’t assume KX to be Q-Cartier because on a surface we can
always pullback in the sense of Mumford). If E = 0, then we have the
ADE singularities (rational double points). If E = ∑ aiEi with ai > −1,
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2.2. Log pairs

then X has quotient singularities. The moral is that low discrepancies
means hard singularities.

2. If X′ is smooth and projective, µ : X′ → X is a birational contraction of
E to a point, such that KX′ |X is antiample. If moreover KX is Q-Cartier,
then we can write KX′ = µ?KX + aE. If C ⊆ E is a curve, then E · C < 0
and KX′ · C < 0 and this implies a ≥ 0 (i.e., X has at most terminal
singularities).

2.2 Log pairs

2.1 definition. Let X be normal, D = ∑ aiDi be a Q-linear combination of
integral Weil divisor. We say that D is Q-Cartier if mD is Cartier for m ∈N.

2.2 definition. A pair (X, ∆) is a log pair if X is a normal variety, KX + ∆ is
Q-Cartier and ∆ = ∑ diDi with di ∈ [0, 1].

The philosophy is that in some situation, the canonical divisor is not Q-
Cartier, but we can deform it slightly in order to get a Q-Cartier divisor.

Let now (X, ∆) be a log pair, and µ : Y → X be a birational morphism; then
we write

KY = µ?(KX + ∆) + ∑
E⊆Y prime

aE(X, ∆)E.

We call aE(X, ∆) the discrepancy of E with respect to (X, ∆). Up to now these
coefficients are not really well defined; so we make a convention: in the sum
there are two cases: if E is contracted by µ, there is already no ambiguity; if
µ(E) is a divisor, then aE(X, ∆) 6= 0 if and only if µ(E) = Di, and in this case
aE(X, ∆) = di.

One could write the same formula without assuming this convention, ex-
tracting from the sum the strict transform of the Di.

2.3 remark. One could ask why we define things using discrepancy greater
or greater or equal than 0 or −1, and not with other limits. The reason is the
following: if E ⊆ Y is such that aE(X, ∆) < −1, then there exists µ′ : Y′ → X
with E′ of arbitrarily small discrepancy. For example, if aE(X, ∆) = −1− c,
we can take Z0 ⊆ E of codimension 1, blow it up, obtaining an exceptional
divisor E0 of discrepancy −c, and blowing up the intersection of E and E0 we
get a divisor of discrepancy −2c. In this way we get all the multiples of −c.

2.4 definition. A log pair (X, ∆) is log canonical (lc) if aE(X, ∆) ≥ −1; is Kawa-
mata log terminal (klt) if aE(X, ∆) > −1 (for all E ⊆ Y prime divisor and all
µ : Y → X).

Note that since a pair has di ∈ [0, 1], then a klt pair (by our definition) has
di < 1.

2.5 example. We will show that being lc sometimes is a numerical condition,
but this is not the case in general. Let X be smooth, ∆ ⊆ X an effective divisor.
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2. Singularities of pairs

1. If multx ∆ ≥ n ' dim X then (X, ∆) is not lc: let µ : Y := Blx X → X,
then Ky = µ?KX + (n− 1)E, then µ?∆ = ∆′ + multx ∆E and this implies
that aE(X, ∆) = n− 1−multx ∆ < −1.

2. If X is a surface, divisor with a node (reducible or irreducible) are lc,
but a cusp is not lc (even if it has multiplicity less or equal than 2 for
all points). To see this, blow up three times the cusp point, then we have
KX′ = µ?KX + E1 + 2E2 + 4E3, while µ?∆ = C + 2E1 + 3E2 + 6E3, and we
have aE3(X, ∆) = −2 (one stops the blowing up process then the divisors
intersect transversally and are smooth).

2.6 definition. Let (X, ∆) be a log canonical pair. We say that a subvariety
ω ⊆ X is a lc center if there exists µ : Y → X birational, with E ⊆ Y mapping
to ω such that aE(X, ∆) = −1.

We have the following generalization of Kodaira’s vanishing theorem.

2.7 theorem (Nadel). Let (X, ∆) be a lc pair with X projective, M a Cartier divisor
such that M− (KX + ∆) is nef and big, then Hi(X, M⊗ Iω) = 0 for every i > 0
where ω is the union of the lc centers of (X, ∆).

In particular, if we look at the sequence

0→ Iω ⊗M→ M→ M|ω → 0,

then Nadel vanishing says that H0(X, M) surjects onto H0(M, M|ω). In other
words, Nadel’s theorem gives an induction strategy on the dimension. The
problem is that the theorem does not tell what is the geometry of ω.

2.3 Problems in understanding the lc centers

2.8 example. Let X be a smooth surface, ∆ = ∑ diDi, with the Di smooth and
intersecting transversally. In this case, (X, ∆) is lc. Suppose that d0 = 1, then
D0 is a lc center. If also D1 meets D0 in a point p and d1 = 1, then p is a lc
center too. There are two situations now: there exists a 0-dimensional center,
or di < 1 for all i such that Di ∩ D0 6= ∅. In the latter case, (D0, ∑ diDi ∩ D0)
is a klt pair. Moreover, by subadjunction,

(KX + ∆)|D0
∼= KD0 + ∑ diDi ∩ D0.

2.9 theorem (Kawamata). Let (X, ∆) be a lc pair, and ω ∈ X a minimal lc center.
Let H ⊆ X be an ample divisor; then for every ε > 0, there exists a divisor ∆ω ⊆ ω
such that (ω, ∆ω) is klt and Kω + ∆ω = (KX + ∆ + εH)|ω.

In other words, if we add just a little bit of positivity, we can do an adjunc-
tion formula.
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2.4. An application

2.4 An application

2.10 theorem. Let X be a smooth projective surface such that KX ∼= OX ; let A ⊆
X be an ample Cartier divisor, D ∈ |A| a general element. Then (X, D) is lc; in
particular D is reduced.

2.11 remark. By Bertini’s theorem, we know that the singular locus of D is
contained in Bs |A|.

Proof. If (X, D) is not lc, we can make it so by lowering the coefficients of the
boundary divisor. That is, (X, cD) is lc (but not klt) for some 0 < c < 1. In
particular, there exists a log canonical center ω ⊆ X for (X, cD), and with
some perturbation technique, we can assume that there exists only one. Note
that ω is contained in Bs |A|. Now,

A− (KX + cD)︸ ︷︷ ︸
=cA

= (1− c)A

is ample. Applying Nadel’s theorem, we have H0(X, A) � H0(ω, A|ω). If ω
is a point, we already have a contradiction. So suppose it is a curve. Then, by
Kawamata, (ω, ∆ω) is klt and therefore ω is a smooth curve. By subadjunction,

A|ω − (Kω + ∆ω) = A|ω − (KX + ∆ + εA)− (1− c− ε)A.

This in particular implies deg A|ω > deg Kω, and for a curve this is enough
to ensure that A|ω has a global section, i.e. H0(ω, A|ω) > 0. Hence, A has a
section and this contradicts the fact that ω was in Bs |A|.

3 Fano manifolds and Hodge theory

Lecture 3 (1 hour)
October 7th, 2010In the following we are going to see some applications of Theorem 2.10.

3.1 exercise. Theorem 2.10 holds even if X has canonical singularities.

3.2 theorem. Let (X, ∆) be a log pair, S ⊆ X an integral divisor, S * Supp ∆.
Then (X, S + ∆) is lc near S if and only if (S, ∆|S) is lc.

3.3 remark. The direction⇒ is easy, the surprising part is the other direction.

3.1 Anticanonical divisors on Fano manifolds

Recall that by definition, X is Fano if and only if −KX is ample.

3.4 example. The projective spaces are Fano, Blp1,...,pn P2 is Fano for n ≤ 8
when the points are in general position.

We have a complete classification of Fano varieties of dimension less or
equal than 3. The case of $(X) = 1 cannot be treated with the mmp, and it
was accomplished by the Russian school. Actually, they did the classification
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3. Fano manifolds and Hodge theory

in the hypothesis that there is a smooth anticanonical divisor, and some years
later Shokurov proved that this is true.

3.5 theorem (Shokurov, 1980). Let X be a smooth Fano threefold; then a general
element in |−KX | is a smooth surface.

3.6 remark. By Kodaira vanishing, hi(X,−KX) = 0 for i > 0; also, by Riemann-
Roch we have

h0(X,−KX) = χ(X,−KX) = 2.

In particular, if S ∈ |−KX | is a smooth surface, than KS ∼= OS and h1(S,OS) =
1, so S is a K3 surface.

Idea of the proof of Theorem 3.5. The modern proof of Shokurov’s theorem is di-
vided in two steps:

1. if S ∈ |−KX | is general, then it has canonical singularities;

2. use the classification of linear systems on K3 surfaces (Saint-Donat, 1975).

By inversion of adjunction, the first step is equivalent to proving that (X, S)
is lc, and that all the lc centers are divisors (this condition is summed up
saying that (X, S) is plt).

We will give here a different proof of second part. Fix S1 ∈ |−KX | general.
By the first step, S1 has canonical singularities, hence by adjunction KS ∼= OS.
Consider another S2 ∈ |−KX | general, and let C := S1 ∩ S2 ∈

∣∣−KX |S1

∣∣. This is
again a general element of that linear system. Then, by Theorem 2.10, (S1, C)
is lc, and C is reduced.

Therefore, the Sing C is a finite set, and being C a complete intersection of
two general divisors, we have Sing S1 ∪ Sing S2 ⊆ Sing C.

By replacing S2 by a sufficiently general member of the pencil generated by
S1 and S2, we can assume that the singular points of C are singular both on S1
and on S2. So let p be a singular point of S1 and S2; we obtain multp(S1 +S2) =
4 ≥ dim(S1 + S2), therefore, (X, S1 + S2) is not lc. But, inversion of adjunction
implies that (S1, S2|S1 = C) is not lc, and this is a contradiction.

In the following, we restrict to dimension at most 4.

3.7 theorem (Kawamata (2000)). If X is a Fano fourfold, and Y ∈ |−KX | is
general, than Y has canonical singularities.

3.8 theorem (Höring-Voisin). If X is a smooth Fano fourfold, and Y ∈ |−KX | is
general, then Y has isolated singularities.

3.9 remark. The proof of this theorem is similar to the new one we saw for
Shokurov’s theorem. Also, the result is the best obtainable. Consider S :=
Blp1,...,p8 P2; then Bs |−KS| = |pi|; consider X := S× S, then Bs |−KX | = S1 ∪
S2, where Si := π−1

i ({pi}) and πi are the projections X → S. If Y ∈ |−KX | is
general, than S1 ∪ S2 ⊆ Y, and Si are Weil divisor that are not Cartier (indeed,
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3.2. Hodge conjecture with integral coefficients

if they were, then dim S1 ∩ S2 ≥ 1, but their intersection is just {pi}). So X is
not Q-factorial, hence cannot be smooth.

3.2 Hodge conjecture with integral coefficients

Let X be a complex projective manifold. Then the Hodge decomposition is

Hk(X, C) ∼=
⊕

p+q=k

Hp,q(X),

where on the left we have de Rham cohomology and on the right we have
Dolbeaut cohomology.

If Z ⊆ X is a subvariety of codimension k, then [Z] ∈ H2k(X, C) and we
know that [Z] ∈ Hk,k(X) ∩H2k(X, Z). We say that α is a Hodge class if this
condition holds, i.e. if α ∈ Hk,k(X) ∩H2k(X, Z).

3.10 conjecture (Hodge). The class α is a Hodge class if and only if α = ∑ αiZi
with Zi ⊆ X subvariety and αi ∈ Q.

The Hodge conjecture is false if we impose αi ∈ Z. A counterexample has
been given by Kollár: let X3 ⊆ P4 be a very general hypersurface of degree
73. Then H4(X, Z) = Zα, and α is not algebraic.

3.11 theorem (Voisin). Let X be a smooth projective Calabi-Yau threefold, with
KX ∼= OX , h1(X,OX) = h2(X,OX) = 0. Then the integral Hodge conjecture holds
for curves.

3.12 theorem (Höering-Voisin). If X is a smooth Fano fourfold, than the integral
Hodge conjecture holds for curves.

Using these Hodge classes of curves, we can define a birational invariant of
a variety (Soulé-Voisin). If X is rational, than integral Hodge conjecture holds;
therefore, if it fails we know that X is not rational.

To prove the theorem, the obvious idea is to consider Y ∈ |−KX | a smooth
divisor; then Y is a Calabi-Yau threefold, and by Lefschetz one has H4(Y, Z) �
H6(X, Z). The problem is that we don’t have smoothness but only isolated
singularities.

To solve the problem, one look at the proof of Theorem 3.11. One take
a very ample divisor H ⊆ Y; then by Lefschetz H2(H, Z) � H4(Y, Z). In
our situation, Y is not smooth, but having isolated singularities, H ⊆ Y very
ample is a smooth surface contained in the smooth locus of Y, and one can
apply Lefschetz again.

3.13 theorem (Voisin). There exists a Z-bases (α1, . . . , αn) of H2(H, Z) such that
αi becomes a Hodge class in a small deformation.
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