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1 Complex multiplication

Lecture 1 (1 hour)
October 4th, 2010Consider an elliptic curve E over C; its endomorphisms ring End(E) is known

to be Z in general, or some ring O ⊆ K := Q(
√

d) with disc d < 0. In the latter
case, E is said to have a complex multiplication by O.

Since we are over C, we can identify E with a complex torus, i.e., there is a
lattice Λ ⊆ C such that E ∼= EΛ, where EΛ is the elliptic curve associated to the
lattice. We set EΛ := C/Λ, where the class of the point z in C/Λ corresponds
to the point in the plane (p(z, Λ), p′(z, Λ)); equivalently, E is given in P2 by
the equation y2 = 4x3 − g2(Λ)x− g3(Λ).

We have that End(EΛ) = { α ∈ C | αΛ ⊆ Λ }. Moreover, if two lattices are
homotetic (obtained one from the other by the multiplication by a complex
number) then the two elliptic curves obtained are isomorphic.

1.1 proposition. Let 0 6= λ ∈ Λ; then EΛ has complex multiplication by OK if and
only if 1/λΛ ⊆ K is a fractional ideal.

We obtain a bijective map from the set of ideal classes Cl(K) of K to Ell(K),
the set of elliptic curves with complex multiplication by OK, modulo isomor-
phisms. In particular, K acts on Ell(K) by [ξ] · [EΛ] := [Eξ−1Λ].
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1. Complex multiplication

1.2 example. Let Λ ' Z[ι] ⊆ C and let K := Q(ι). For the elliptic curve
C/Λ ∼= (y2 = x3 + x), the action is given by ι · (x, y) = (−x, ιy).

1.3 proposition.

1. Let E be a complex elliptic curve, and σ ∈ Aut(C); then End(Eσ) = End(E).

2. If E has a complex multiplication byOK, then it is defined over Q and j(E) ∈ Q.

Moreover, the ideal class group is finite, so, for example, {j(E)σ} is finite.

1.4 theorem. Let E be a complex elliptic curve with complex multiplication by OK;
then:

1. j(E) is an algebraic integer;

2. K(j(E)) = H, the Hilbert class field of K;

3. the action of Gal(H/K) on j(E) = j(Eξ) is given by the Artin map of class field
theory,

(•, H/K) : Cl(K)→ Gal(H/K),

defined by j(Eξ)
(p,H/K) = j(Ep−1ξ).

Now we know that j(E) is an algebraic integer when E has a complex
multiplication by OK. Can we describe it more explicitly? This question was
explored already in the beginning of the twentieth century, for example by
Berwich and Deuring. In the eighties, Gross and Zagier proved an explicit
formula for the norm of j(E).

Gross and Zagier considered j as a function from the moduli space of
elliptic curves to the affine line, that gives an identification of the two. But j is
not canonical, for example, j+ 1 has the same properties. So, Gross and Zagier
studied the differences between two of these j-invariants.

Consider d1, d2 with negative discriminants, and let Ki := Q(
√

di); then
they defined

J (d1, d2) = ∏
[Ei ]∈Ell(Ki)

(j(E1)− j(E2)).

This is more canonical since for example, taking j or j+ 1 does not change this
function. Note that if d2 = −3, then j(E2) = 0, so as a special case we recover
the j-invariants we started with (more precisely, J (d1,−3) = NE1/K1

(j(E1)).
Starting with these observations, they proved the following.

1.5 theorem (Gross-Zagier). We have

J (d1, d2)
2 = ±∏

x∈Z
n,n′∈Z>0

x2−4nn′=d1d2

nε(n′),

where ε(n′) ∈ {±1} is the value of some “genus character”.
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In particular, note that n ≤ 1/4d1d2.

1.6 corollary. If a prime p divides J (d1, d2), then p | 1/4(d1d2 − x2) for some
x ∈ Z, with |x| < d1d2 and x ≡

√
d1d2 (4).

Proof. Let L := H1 · H2 be the composition of the two Hilbert classes. If p |
J (d1, d2), then there must be a prime ideal P ⊆ OL over p, and two elliptic
curves Ei ⊆ Ell(Ki) such that P | (j(E1)− j(E2)). This implies that OL/P is an
extension of Fp and moreover E1

∼= E2 over OL/P = Fp.
Hence, End(Ei/Fp) contains OK1 and OK2 with K1 6= K2 and (d1, d2) = 1. By

the work of Deuring, End(Ei/Fp) ∼= OB ⊆ B := Bp,∞, where B is the quaternion
algebra ramified at p, ∞.

Putting the two together, we obtain that OB contains some αi with α2
i = di,

therefore α := α1α1 ∈ OB. Now, define x := tr(α) ∈ Z; by the properties of
B, we have that x2 < N(α) (because B is ramified at ∞) and x2 ≡ d1d2 (p)
(because B is ramified at p). Working with di/2 or di + 1/2 (depending on the
parity), we could have obtained also the factor 1/4.

We know that in the case of C, we can parametrize elliptic curves modulo
isomorphisms with the upper half complex plane H, modulo SL2(Z). So we
can study the points in the upper half plane that corresponds to elliptic curves
with complex multiplication. These turn out to be (sloppily) τ ∈ H ∩ K, or,
more precisely, points τ such that aτ2 + bτ + c = 0 with a, b, c such that b2 −
4ac = d.

Of course we can reinterpret the function j as a function coming from H.
Mimicking what we did before, we consider j(z1)− j(z2), where zi are point
in H. Zagier also gave a proof that log |j(z1)− j(z2)| is the resolvent kernel
for the (regularized) hyperbolic Laplacian.

2 Complex multiplication values of Borcherds products

Lecture 2 (1 hour)
October 5th, 2010Let Γ(1) := SL2(Z); we already said that Y(1) := H/Γ(1) is in a bijection with

the set of elliptic curves over C; we have also the map j from this set to C.
Hence, we can view also j : H→ C, a Γ(1)-invariant functions on the complex
upper half plane. In other words,

j
(

aτ + b
cτ + d

)
= j(τ), ∀

(
a b
c d

)
∈ Γ(1).

Now, we consider instead functions f such that f (γτ) = (cτ + d)k f (z)
for every γ ∈ Γ(1). These are called modular forms of weight k for Γ(1). In
particular, j is a modular form of weight 0. So, the Gross-Zagier function
j(τ1)− j(τ2) is defined on Y(1)×Y(1).

2.1 example. Let V := M2(Q), Q = det be the determinant as a quadratic
form (with signature (2, 2); SL2× SL2 acts on V by (γ1, γ2) · X := γ1Xγ−1

2 ,
and this action leaves the quadratic form Q unchanged, so we have a map
SL2× SL2 → SO(V).

3



2. Complex multiplication values of Borcherds products

Indeed, we can construct modular forms using the so called “theta lift”.

2.1 Setup

Let (V, Q) be a quadratic space of signature (n, 2). Consider SO(V) and H :=
GSpin(V). This sits in an extension

1→ Gm → H → SO(V)→ 1.

Consider L ⊆ V an even unimodular lattice (for simplicity), and K ⊆ H(Q̂) a
compact open subgroup.

We consider also a space D that is for us a generalization of H; it is real-
ized explicitly as the subset of the Grassmannian of V(R) determined by the
hyperplanes Z of dimension 2 such that Q|Z < 0.

Finally, define the Shimura variety as XV,K = XK := H(Q) \(D×H(Q̂)) /K.
This is a quasi-projective variety over Q, of dimension n.

2.2 example. If n = 2, V = M2(Q), Q = det, then H is the group of pairs
(g1, g2) ∈ GL2×GL2 with det g1 = det g2. We can take K as the subgroup
of pairs in H such that both elements are in GL2(Ẑ). Finally, we get XK ∼=
Y(1)×Y(1).

2.2 Special cycles

Let us consider the case of signature (n, 2). Let W ⊆ V be positive defi-
nite, with dimension r < n, defined over Q; then W⊥ ⊆ V has signature
(n − r, 2), and HW := GSpin(W⊥) embeds in H. Moreover, we have a map
XW⊥ ,K∩HW (Q̂) → XK = XV,K, and its image defines a cycle Z(W) of codimen-
sion r.

2.3 example. Take x0 ∈ L ⊆ V, with V primitive and Q(x0) = m > 0. Then
W = Qx0 and Z(m) := Z(Qx0). This is called the discriminant m.

2.4 example. If V = M2(Q) and XK = Y(1)× Y(1), then Z(m) = Γ(m), the
m-th Hecke correspondence on Y(1).

2.3 The Siegel theta function

Let M be a positive definite lattice of rank r; let ΘM(τ) := ∑λ∈m e2πιQ(λ)τ with
τ ∈ H. Using the Poisson summation formula, one can prove that this is a
modular form of rank r/2 for Γ ⊆ Γ(1).

The Siegel theta function is defined to be

Θ(τ, z, h) := v ∑
d∈h·L

e(Q(λz⊥)τ + Q(λ2)τ).

The following are some of its properties:

1. Θ(γ′τ, z, h) = (cτ + d)n + 2/2Θ(τ, z, h) for every γ′ ∈ Γ(1);

2. Θ(τ, γz, γh) = Θ(τ, z, h) for every γ ∈ H(Q);
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2.3. The Siegel theta function

3. Θ(τ, z, kh) = Θ(τ, z, h) for every k ∈ K.

2.5 definition. Let f ∈ M!
1−n/2

(a weakly holomorphic modular form of
weight 1− n/2 for Γ(1)). Then the theta integral is

ϕ(z, h, f ) :=

reg∫
Γ(1)\H

f (τ)Θ(τ, z, h)d µ(τ).

The regularization is needed to ensure that the integral converges: instead
of integrating over a fundamental domain F, we consider the limit for T → ∞
of the integral over the fundamental domain truncated at =τ ≤ T.

2.6 theorem (Borcherds). Let f (τ) = ∑m≥m0
c(m)qm ∈ M!

1−n/2
, with m < 0 ⇒

c(m) ∈ Z. Then there is a meromorphic modular form ψ(z, h, f ) on XK such that:

1. ψ has weight c(0)/2;

2. the divisor associated to ψ is Z( f ) = ∑m>0 c(−m)Z(m);

3. product expansion;

4. log ‖ψ(z, h, f )‖ = −1/4ϕ(z, h, f ).

2.7 example. Consider again V = M2(Q), XK = Y(1)×Y(1); take f = j(τ)−
744 =: J ; then J (τ) = q−1 + 0 + · · · ∈ M!

0, and

Ψ(z,J ) = q−1
1 ∏

m,n∈Z
m>0

(1− qm
1 qn

2 )
c(mn) = j(z1)− j(z2).

Moreover, we have Z(J ) = Z(1) = Γ(1).
Lecture 3 (1 hour)
October 6th, 2010The goal is to evaluate the function Ψ at complex multiplication cycles

Z(W), that is, obtain the rational number

Ψ(Z(W), f ) = ∏
[z,h]∈Z(W)

Ψ(z, h, f ).

So, if we take the logarithm, we obtain

log ‖Ψ(Z(W), f )‖ = −1/4 ∑ ϕ(z, h, f ).

The question is what is ϕ(Z(W), f ).
Consider a lattice L ⊆ V, then P := L ∩W is a positive definite lattice of

dimension n; associate to any positive definite lattice we have a theta series
ΘP(τ) = ∑λ∈P e2πιQ(λ)τ ∈ Mn/2. Now, let N := L ∩W⊥; it is negative definite
of dimension 2, and ΘN gives a genus theta series Θ[n], that is related (by
Siegel-Weil) to the Eisenstein series EN(τ, s, 1) of weight 1. It turns out this
has a functional equation, that relates the values of EN for s and −s, and in
particular, EN(τ, 0, 1) = 0, and it makes sense to study the derivative EN(τ) =
d
d s EN(τ, s, 1)|s=0.
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3. Traces of singular moduli

2.8 theorem (Schofer). Let f ∈ M!
1−n/2

and W ⊆ V; if f = ∑m≥m0
c(m)qm

(where q = e2πιτ), then

ϕ(Z(W), f ) = deg Z(W) · ∑
m>0

c(−m) · d(m),

where d(m) is the m-th coefficient of ΘP · EN .

This theorem gives another proof of Gross-Zagier’s formula.

3 Traces of singular moduli

Let E be a complex elliptic curve with complex multiplication by OK ⊆ K =
Q(
√

d), with d > 0. Then Gross-Zagier formula gives the norm of the j-
invariant, NH/K(j(E)) ∈ Z. We want to understand also the trace of the j-
invariant. The trace is

trH/K(j(E)) = ∑
[ξ]∈Cl(K)

j(Eξ) = ∑
Q∈Qd/Γ(1)

j(τQ),

where Qd is the set of all primitive quadratic forms of discriminant −d, i.e.
triples (a, b, c) ∈ Z3 such that b2 − 4ac = −d.

In order to proceed, we have to do some modifications; the first is to replace
j by J := j− 744; the second is to use the weight 2/ωQ, with ωQ = |Γ(1)|Q,
that is 2, 4, or 6 depending on the number of roots of unity in Cl(K); the third
is to sum over all quadratic forms, not only over the primitive one.

3.1 definition. We define

g(τ) := Θ1(τ) ·
E4(4τ)

η(4τ)6 ∈ M!
3/2(Γ0(4))+,

where:

Θ1(τ) = ∑
m∈Z

(−1)nqn2

E4(τ) = 1 + 240 ∑
n≥1

σ3(n)qn

η(τ) = q1/24 ∏
n≥0

(1− qn)

3.2 theorem (Zagier). We have

g(E) = q−1 − 2−∑
d>0

d≡0,3 (4)

td(J )qd,

where

td(J ) = ∑
Q∈Qd/Γ(1)

2/ωQJ (τQ).
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