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1 Deformation of quasi-coherent sheaves

Lecture 1 (1 hour)
August 30th, 20101.1 The locally free case

1.1 notation. In the following, we will always consider:

• a surjection of rings A � A0 whose kernel I is square zero (i.e., I2 = 0);

• an A-scheme X → Spec A;

• a locally free sheaf V0 of OX0 -modules.

We define X0 := X⊗A A0 and denote with Z the topological space underlying
X and X0 (which is the same for both), so that X = (Z,OX) and X0 = (Z,OX0)
as locally ringed spaces; moreover OX-modules and OX0 -modules are abelian
sheaves over Z.
∗s.maggiolo@gmail.com
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1. Deformation of quasi-coherent sheaves

The questions we want to address is this: is there a locally freeOX-modules
V such that V |X0

∼= V0? If so, how many of them are there?

1.2 example. If V0 is invertible, then we are infact studying the local geometry
of the Picard scheme.

1.3 definition. A deformation of V0 to X is a locally freeOX-module V together
with an isomorphism ϕ : V |X0 → V0.

An equivalent definition of a deformation of V0 is the following: a locally
free OX-module V together with a map of OX-modules ϕ : V → V0 such that
the reduces map V ⊗OX0 → V0 is an isomorphism.

The main theorem we want to prove about deformations of locally free
sheaves is the following.

1.4 theorem. Given A, A0, I, X, V0 as before, letA := Hom(V0, IOX⊗V0). Then:

1. there is a class o(V0) ∈ H2(X0,A) such that o(V0) = 0 if and only if V0 has a
deformation;

2. if o(V0) = 0, the set of isomorphisms classes of deformations is a torsor under
H1(X0,A);

3. given a deformation (V , ϕ) of V0, the set of automorphisms α : V → V such
that α|V0 = id, is canonically H0(X0,A).

Proof. We will prove the theorem in the special case where X = Spec B is an
affine scheme and V0 = O⊕n

X0
. In this case, V0 corresponds to the B0-modulie

B⊕n
0 . We need to prove the following.

1. There is a natural morphism B⊕n → B⊕n
0 inducing a deformation, and

Hi(X0,A) = 0 for every i > 0.

2. Any two deformations are isomorphic, i.e., for any locally free B-module
M, and any isomorphism ϕ : M⊗B B0 → B⊕n

0 there is an isomorphism
B⊕n → M such that

B⊕n M

B⊕n
0

ϕ

commutes. In order to prove this, choose arbitrarily elements e1, . . . , en ∈
M such that ϕ(ei) = (0, . . . , 0, 1, 0, . . . , 0); by the universal property,
B⊕n → M sending (0, . . . , 0, 1, 0, . . . , 0) to ei is an isomorphism.
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1.1. The locally free case

3. Consider α : B⊕n → B⊕n such that α⊗ B0 = id; then:

0

Hom(B⊕n, IB⊗ B⊕n
0 )

Hom(B⊕n, B⊕n) A

Hom(B⊕n
0 , B⊕n

0 ) id,

where A is the preimage of id; using the same method used in the pre-
vious point, we can prove that A consists of automorphisms; also, A is
a torsor under

HomB(B⊕n, IB⊗ B⊕n) = HomB0(B⊕n
0 , IB⊗ Bn

0 )

; then A can be canonically split by id ∈ A.

To prove the general case, we start with the last statement. Suppose (V , ϕ)
is a deformation of V0. Since an endomorphism reducing to the identity is an
automorphism, we have the following.

HomOX (V , IOX ⊗ V) A := HomOX0
(V0, IOX ⊗ V0)

HomOX (V ,V)

HomOX (V ,V ⊗OX0) {red maps}

HomOX0
(V0,V0) id

where A is the sheaf of automorphisms of V restricting to id. The last state-
ment than follows by applying Γ.

The other two statements follow from the affine case, from the third state-
ment we just proved, and from the so called Zariski descent. Alternatively,
they can be proven directly with Čech cohomology, using local uniqueness to
produce cocycles in A.

A more high-brow proof is the following. To prove the first statement, we
can think of o(V0) as the class of the gerbe of deformations of V0 (over Z). This
gerbe is the stack whose objects over U ⊆ Z are the deformations of V0|U and
whose isomorphisms are isomorphisms of deformations. It can be shown that
this stack has a unique object over any affine U ⊆ Z, up to isomorphisms, and
the automorphisms sheaf of any object over U is canonically identified with
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1. Deformation of quasi-coherent sheaves

A|U . So this is indeed an A-gerbe, and Giraud proved that they are classified
by H2(Z,A). In other words, o(V0) = 0 if and only if the gerbe is the trivial
gerbe BA.

Also the proof of the second statement can be expressed in this language.
Fix a deformation (V , ϕ), and we use this to study other deformations. If
(V ′, ϕ′) is another deformation, consider the sheaf of isomorphisms of defor-
mations, Isom((V ′, ϕ′), (V , ϕ)). On it, the group A := Isom((V , ϕ), (V , ϕ))
acts on the left, and local uniqueness tells us that this makes it an A-torsor.
Now, A-torsor up to isomorphisms are in a bijection with H1(Z,A), so there
is a bijection between H1(Z,A) and the set of deformations of V0 up to iso-
morphisms.

Using this language one avoid the choices that are mandatory using Čech
cohomology (and avoid to prove that the choices don’t change the result); on
the other hand, the theory behind is much harder.

1.2 The general case

If V0 is not locally free, we have to impose some flatness conditions that were
implicit in the previous case.

1.5 notation. We fix the following notation: X0 := X ⊗ A0, p : X → Spec A,
and F0 for a quasi-coherent OX0 -module that is A0-flat.

1.6 definition. A deformation of F0 is a quasi-coherent OX-module that is
A-flat, together with an isomorphism ϕ : F |X0 → F0.

Even not assuming that A is flat over A0, we have the following.

1.7 proposition (Local criterion for flatness). The sheaf F is A-flat if and only if
F ⊗OX0 is A0-flat and the map p? I ⊗F → IF is an isomorphism.

In this case, p? I ⊗F = IOX ⊗F ∼= IF .
Theorem 1.4 can be restated in a way that is more prone to generaliza-

tion. The class o(V0) can be thought to be in Ext2
OX0

(V0, IOX ⊗ V0); the set

of deformations can be thought as a torsor under Ext1
OX0

(V0, IOX ⊗ V0); the

infinitesimal automorphisms can be thought as HomOX0
(V0, IOX ⊗ V0).

If F is a deformation of F0, then reduction and multiplication define a
canonical extension

0→ IOX ⊗F0 → F → F0 → 0

in Ext1
OX

(F0, IOX ⊗ F0). We can now state the theorem for non locally free
sheaves.

1.8 theorem. Given A, A0, I, X, F0:

1. there is a class o(F0) ∈ Ext2
OX0

(X0, IOX ⊗ F0) such that o(F0) = 0 if and
only if F0 has a deformation;
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2. if o(F0) = 0, the set of isomorphisms classes of deformations is a torsor under
Ext1

OX0
(X0, IOX ⊗F0);

3. given a deformation (F , ϕ) of F0, the set of auromorphisms α : F → F such
that α|F0 = id, is canonically Hom(F0, IOX ⊗F0).

The proof of the last statement is the same we saw before. For the others,
one uses adjunctions to prove that

R HomOX (F0, IOX ⊗F0) = R HomOX0
(OX0 ⊗F0, IOX ⊗F0).

Then one uses the spectral sequence

Extq
OX0

(T orOX
p (OX0 ,F0), IOX ⊗F0)⇒ Extp+q

OX
(F0, IOX ⊗F0).

The sequence 0 → IOX → OX → OX0 → 0 gives T orOX
q (OX ⊗ F0) = IOX ⊗

F0, so the low degree sequence of the spectral sequence is

0→ Ext1
OX0

(F0, IOX ⊗F0)→ Ext1
OX

(F0, IOX ⊗F0)→

→ Hom(IOX ⊗F0, IOX ⊗F0) → Ext2
OX0

(F0, IOX ⊗F0)

and the identity in the third space maps to o(F0).

2 Sheaves on curves

Lecture 2 (1 hour)
August 31st, 2010Our next goal is to prove that the moduli spaces of locally free sheaves with

fixed determinant and rank on a curve are unirational.
We will do this without working with geometric invariant theory and with-

out using too much the actual moduli spaces.

2.1 notation. We will write p : C → S for a proper, smooth morphism of
schemes, of relative dimension 1 (i.e., a family of smooth curves) with S con-
nected and with connected geometric fibers.

2.2 definition. We define ShC/S as the stack of locally free sheaves. Objects
over T → S are locally free OCT -modules (on C ×S T). We define also the
closed and open substack Shn

C/S of rank n sheaves.

2.3 example. We have Sh1
C/S = PicC/S, the stack of invertible sheaves.

Technically, these are Artin stacks, and Shn
C/S is locally of finite presen-

tation. This is the hidden reason to explain why the deformation theory is
nice.

2.4 theorem. For every n, the stack Shn
C/S is smooth.

2.5 theorem. Given n, the determinant morphism Shn
C/S → PicC/S is smooth with

unirational geometric fibers.
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2. Sheaves on curves

Let us clarify some notions about the determinant morphism and defor-
mations with fixed determinant. If V is a locally free sheaf on a scheme Y of
rank n, there is a natural invertible sheaf associated, detV :=

∧n V ; this is a
functorial construction, so it defines the morphism we saw in the theorem.

2.1 Deformation theory with fixed determinant

Previously we saw the deformation theory for locally free sheaves; now we
want to fix also the determinant, so we have V0 locally free on X0, and in
addition to what we did, we fix also L invertible on X and an isomorphism
α : detV0 → L|X0 .

2.6 definition. A deformation of V0 with determinant L is a triple (V, ϕ, γ)
where (V , ϕ) is a deformation of V0 and γ : detV → L is an isomorphism
such that γ|X0 = α · det ϕ

Even if this is a different deformation problem, we can express the defor-
mation theory in a very similar way. Before showing it, note that the trace
defines a map

Tr : Hom(V0, IOX ⊗ V0)→ IOX .

Moreover, we have the following.

2.7 lemma. Giving an infinitesimal isomorphism α : OX → IOX ⊗O⊕n
X0

, we have
that det(id+α) = id+Tr(α) as endomorphisms of OX .

So the infinitesimal isomorphisms that does not change the determinant
are precisely the one with no trace.

2.8 definition. Given i, write Exti(V0, IOX ⊗ V0)0 for the kernel of the trace
map

Tr : Exti(V0, IOX ⊗ V0)→ Hi(X0, IOX);

this is called the traceless part.

2.9 theorem. Given V0, L, and an isomorphism α : detV0 → L|X0 , then:

1. the obstruction to deforming with determinant L lies in Ext2(V0, IOX ⊗ V0)0;

2. isomorphism classes of deformations are a (pseudo) torsor under Ext1(V0, IOX⊗
V0)0;

3. infinitesimal automorphisms of (V , ϕ, γ) are Hom(V0, IOX ⊗ V0)0

Proof of theorem 2.4. Smoothness means that given a square zero extension A �
A0 of affine schemes over S, and given V0 on CA0 , there exists V on CA and an
isomorphism V |CA0

→ V0. We can do this because we know the obstruction to

doing so lies in Ext2(V0, IOX ⊗ V0) = H2(CA0 ,A), and proving the following
lemma.

6



2.2. Unirationality of geometric fibers of the determinant

2.10 lemma. The group H2(CA0 ,F) vanishes for any coherent sheaf F on CA0 .

Proof. Reduce to the case there A is local and Noetherian; then reduce to
A complete by the theorem on flatness of completion. Then the theorem on
formal functions tells us that

H2(CÂ,F) = lim←−H2(CA/mn−1
A

,F |CA/mn−1
A

).

Then we can do an induction on length to reduce to A = K a field.

To prove the smoothness of the determinant map one has just to observe
that the obstructions are the traceless obstructions, but since there are no ob-
structions there are also no traceless ones.

2.2 Unirationality of geometric fibers of the determinant

To prove unirationality, one has to find a family that contains almost all objects
and is parametrized by a rational variety.

More precisely, we will work over S = Spec K = Spec K, with a fixed invert-
ible sheaf L over C. Consider Shn

C/S(L), the moduli space of pairs (V , γ : detV ∼−→
L); we want to prove that this is a union of quasi compact open substacks
Shn

C/S(L)m, each of which is the image of an open subset of an affine space.
We will prove this using the following Bertini-like theorem.

2.11 proposition. Suppose V is a locally free sheaf of rank n and determinant L.
Then, for large enough m, a general map O(−m)n−1 → V has cokernel equal to
L(m(n− 1)).

Proof. Let m be large enough so that V(m) is generated by global sections,
and H1(C,V(m)) = 0. In this case, the functor on K-schemes, sending T to
HomCT (O(−m)n−1,V) is represented by a vector bundle V → Spec K.

On C × V there is a universal map Φ : OCV (−m)n−1 → VCV . Fix some
c ∈ C; since H0(V(m)) generates V(m), there is a surjection

Vc � Hom(O(−m)n−1
c ⊗ k(c),V ⊗ k(c)) ∼= Mn×(n−1)(k(c)).

In this space of matrices, the locus of maps with non maximal rank has
codimension at least 2 (for n ≥ 2). Now, on C× V, we have that the locus of
points (c, v) such that Φ(c,v) has non maximal rank has codimension at least
2. But C has dimension 1, so projecting to V, the image of the locus with non
maximal rank has codimension at least 1, hence there is an open subset of V
such that the map has maximal rank for every point of C.

As a consequence, we can dominate Shn
C/S(L) by an open subset of the

affine space underlying the vector space Ext1
C(L(m(n− 1)),O(−m)n−1).

End of proof of Theorem 2.5. For every m, let Shn
C/S(L)m be the open substack

parametrizing V such that H1(C,V(m)) = 0 and H0(C,V(m)) generates V(m).
In other words, such that p?p?V(m) → V(m) is surjective; thanks to this de-
scription we know that this locus is open by cohomology and base change.
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3. Sheaves on surfaces

Let W be the affine space underlying Ext1
C(O(−m)n−1,L(m(n − 1))). Be-

cause cohomology commutes with flat base change, there is a universal exten-
sion

0→ O(−m)n−1
CW
→ Vuniv → L(m(n− 1))|CW → 0

and this implies that detVuniv ∼= L.
This gives a family, hence a morphism W → Shn

C/S(L)m, and this mor-
phism is surjective.

2.12 corollary. Let V be a vector bundle over C; then a general deformation of V is
a stable vector bundle.

Proof. Stability is an open and nonempty condition. Indeed this is the only
thing we will use about stability (and the proof works for every open property
of vector bundles). Since Shn

C/S(L) is irreducible, then stability is dense.

3 Sheaves on surfaces

Lecture 3 (1 hour)
September 1st, 2010 3.1 Good sheaves

3.1 notation. In the following, f : X → Spec k will be a smooth projective
surfaces over a field, that one can imagine to be algebraically closed, but it is
not necessary.

The goal is to prove the irreducibility of the moduli spaces of locally free
sheaves on X. This problem is more complicated than the previous one also
because we have one more Chern class to account for: the invariants will be
the rank, the determinant, and the second Chern class c2.

An optimistic question would be: is the stack Shn
X/k(L, c) of locally free

sheaves on X with determinant L and second Chern class c irreducible, uni-
rational, of general type, or smooth?

The answer is less optimistic: most of the time it is “no”, even if sometimes
it is “yes”.

From the history of moduli space, one learns that even if one is interested
only in the moduli of some nice problem, he has to compactify the space with
degenerate objects that maybe are not even interesting in themselves. In par-
ticular, there is a sequence of nice problems that can be packaged inductively
by degeneration.

3.2 example. Consider Mg, the stack of smooth curves of genus g; Deligne
and Mumford proved that this is irreducible, but it is not compact. One can
construct a compactification, Mg, where the boundary is a union of pieces
made from Mh, with h < g. Using the compactification, we can prove the
irreducibility in another way: since Mg is smooth, we only need to prove it is
connected; so for each pair of points, we can find two curves to connect the
each point with the boundary, and use induction to connect the two endpoints
in the boundary.
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3.2. Inductive structure

In our case, we won’t really construct a compactification, but we will add
the points corresponding to certain torsion free sheaves that are not locally
free. Note that the terminology in the following is sightly different from the
one used in the literature.

3.3 definition. A torsion free sheaf F on X is good if Ext2(F??,F??)0 = 0.

The sheaf F?? is the double dual of F and it is always locally free; the
subscript means that we want only the traceless part to be 0.

When F is already locally free, a good sheaf is a sheaf for which the ob-
struction group is trivial. But when F is just torsion free, this again says that
the obstruction group is trivial, but also says more.

Before going on, for simplicity we will make another assumption, that the
rank of our sheaves are units in the field k; i.e., we are not dealing with rank
p sheaves in characteristic p.

Let us specify what was that “more”: it is that H2(X, End(F)0) = 0. As we
will see, this is the obstruction space to a local to global problem that we will
have to deal with in the following.

3.4 proposition. If F is good and rkF ≥ 2, then there is a locally free deformation
of F over k[[t]].

Sketch of the proof.

1. Make an affine open covering {Ui} of X and consider sheaves Fi on
Ui ⊗ k[[t]] such that Fi|t=0 ∼= F |Ui , and Fi|k((t)) is locally free.

2. There are associated coherent sheaves F̂i on the formal schemes ̂Ui ⊗ k[[t]].

3. The obstruction to glueing the sheaves F̂i, one thickening at a time, lies
in H2(X, End(F)0), which is zero by assumption.

4. Therefore, there exists a coherent sheaf on ̂X⊗ k[[t]].

5. Grothendieck existence (EGA III) algebraizes this construction.

Grothendieck existence, or formal GAGA, states that if Y/A is proper or
complete and locally Noetherian, then Coh(Y) = Coh(Ŷ) is an equivalence of
categories. Concretely, given a sequence of sheaves Fi on Y⊗ A/mi+1, and iso-
morphisms Fi|Y⊗A/mi → Fi−1, then there is a unique F on Y with compatible
isomorphisms F |Y⊗A/mi+1 → Fi

We could prove that being good is an open condition, i.e., constructible and
stable under generization. Therefore, the moduli problem of good sheaves is
good.

3.2 Inductive structure

The goal now is to make new good sheaves from old ones.
Take F , and choose a point x ∈ X over which F is locally free. Take

a quotient F ⊗ k(x) → k(x) and let F ′ := ker(F → F ⊗ k(x) → k(x)).
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4. An application to the geometry of Pn-bundles

The new sheaf is no more locally free over x, but it has the same reflexive
hull (double dual) of F . Moreover, we could prove with a computation that
c2(F ′) = c2(F) + 1, and also the determinant does not change, being the de-
terminant of F isomorphic to the determinant of F??.

So with this construction we are relating different moduli spaces of good
sheaves; in particular, we have a map Goodn

X(L, c) → Goodn
X(L, c + 1), that is

analogous to the natural maps we have between the moduli spaces of curves.

Write Ξ(c) for the set of the components of Goodn
X(L, c); then the previous

morphism gives a map Ξ(c) → Ξ(c + 1). Let Φ be the degree 1 map that
account for all these maps: Φ :

⊔
c Ξ(c)→ ⊔

c Ξ(c).

3.5 theorem (O’Grady). Given a finite subset ξ ⊆ Ξ(c), there exists d such that
Φ◦d(ξ) is a singleton; i.e., Φ is a contraction.

3.6 theorem (O’Grady). For the substack of stable sheaves, we have:

1. for c� 0, Φ is surjective on components;

2. for c� 0, Stablen
X(L, c) is (geometrically) irreducible.

The key point to prove the two theorems is another Bertini-like theorem.

3.7 theorem. Suppose V, W are two locally free sheaves on X of rank n, determinant
L and c2 = c. For large enough m, the cokernel of a general map V → W(m) is an
invertible sheaf Q supported on a smooth member of |O(nm)|. Moreover, the degree
of Q depends only on n, L, c.

In other words, we have 0→ V →W(m)→ Q→ 0, where Q ∈ Pic(C) and
C ⊆ X is a smooth divisor in |O(nm)|; moreover, deg Q = d is independent of
V and W.

As we vary C and Q, the spaces Ext1
X(Q, V) do not form a vector bundle;

but for l � 0, the spaces Ext1
X(Q(−l), V) do. We end up with the diagram

0 0 0

0 V W ′ Q(−l) 0

0 V W(m) Q 0

0 S S 0

where S has finite length d. Hence, [W ′] ∈ Goodn
X/k(L, c + l).
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4 An application to the geometry of Pn-bundles

Lecture 4 (1 hour)
September 2nd, 20104.1 Measuring the failure to be a Pn-bundle

Before going on, let us summarize what we have seen so far.

1. We described the infinitesimal deformation theory of sheaves (and the
generality of the discussion hints to the fact that the theory applies also
to more general spaces than curves and surfaces).

2. We showed that if Y is a curve over a field, then the spaces Shn
Y(L) are

geometrically irreducible and geometrically unirational.

3. We showed that if Y is a surface, then the spaces Shn
Y(L, c) contain geo-

metrically irreducible open substacks.

Now we are going to discuss Pn-bundles, that is, proper flat morphisms
P→ X with geometrical fibers isomorphic to Pn.

4.1 example. If V is a locally free sheaf of rank n + 1, then P = P(V) is a
Pn-bundle. But not all Pn-bundle arise in this way: let X := Spec R, P :=
Z(x2 + y2 + z2) ⊆ P2; P is a conic without rational points, so it is different
from P1.

4.2 problem. Given P→ X, how can we measure the failure of P to be (Zariski
locally on X) of the form P(V)?

We can rephrase the question in this way: let X = Spec K, P be defined
over K and P⊗ K ∼= Pn; how can we tell how far P is from Pn?

4.3 remark. There are two ways to tell if P ∼= Pn:

1. if there exists a divisor H ⊆ P of degree 1, or in other words if H ⊗ K is
a hyperplane, then |O(H)| : P→ Pn is an isomorphism;

2. if P(K) 6= ∅, then P ∼= Pn; more refined, if P contains a 0-cycle of degree
1 over K, then P ∼= Pn.

The reason for the second way to be true, is that every P has a dual fi-
bration, P∨; under this duality, points becomes hyperplanes and viceversa;
therefore, P(K) 6= ∅ implies that there exists H ∈ P∨ such that H ⊗ K is an
hyperplane, hence P∨ ∼= Pn and consequently P ∼= Pn.

For the second part, a 0-cycle of degree 1 implies the existence of a se-
quence of field extension Li/K with gcd{[Li : K]} = 1 and the existence of hy-
perplanes Hi ⊆ P∨⊗ Li for each i. The norm NLi/K(Hi) ⊆ P has degree [Li : K],
hence an appropriate linear combination ∑ ai NLi/K(Hi) ⊆ P is a divisor inO(1)
(over K). This means that O(1) is rational over K, hence O(1) : P ∼−→ Pn.

So we have two ways to measure the distance from P to Pn:

1. we may consider d, the minimum positive integer such that there exists
D ⊆ P with D⊗ K ⊆ |O(d)|; d is called the period of D and denoted by
per(P);
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4. An application to the geometry of Pn-bundles

2. we can consider i, the minimum positive degree of a 0-cycle on P; i is
called the index of P and denoted by ind(P).

4.2 Relation between index and period

Note that there is no easy relation between the two (for example, the index
is not the period of the dual). Indeed, the index measure the existence of
hyperplanes after field extensions, while the period measure the existence of
divisor of low degree.

But the norm argument shows that per(P) | ind(P); also, (only when K is
infinite) if D ⊆ P is geometrically O(d), then Dn = dn, hence general members
of |D| will interact to give a 0-cycle of degree dk; this gives ind(P) | per(P)n.

One point of view we can pursue now is to find classes of situations where
per(P) = ind(P); for example, we may ask if there exists a field K where
equality holds, or maybe a dimension.

4.4 example. If n = 1, then per(P) = ind(P). Infact, this number is either 1
or 2, depending on the presence of rational points in the conic P. The reason
here is that divisors and 0-cycles coincides on curves.

4.5 example. If K = K, then per(P) = ind(P) = 1, that is, we always have
P ∼= Pn. This is also true if K = Fq (Wedderburn). Also if K = k(C) is the
function field of a curve C/k with k = k, then P ∼= Pn (Tsen).

4.6 example. There are cases where ind(P) | per(P)n is sharp; for example,
consider a twisted Segre map P1× · · ·× Pl ↪→ P; if K = k(a1, a2, . . . , a2n−1, a2n),
let Pi = Z(x2 − a2i−1y2 − a2iz2). Then per(P) = 2, while ind(P) = 2l . This is
not obvious, but shows that when the fields are generic, also the results are.

4.7 theorem (de Jong). If K is the function field of a surface over k = k, then
per(P) = ind(P) for every P.

4.8 theorem (Lieblich). If P → X is a projective bundle over a proper surface
over Fq, then per(P) = ind(P). This is not true if X is not proper, but in this case
ind(P) | per(P)2.

The second part is significantly harder; the first relies on the reduction
properties over a compact surface.

We have said that a Pn-bundle P → X is not necessarily the projectiviza-
tion of a locally free sheaf. But we can introduce another object where this is
true: there exists a stack X over X, and a locally free sheaf V over X such that
PX ∼= PX(V); in other words, we have a cartesian diagram

PX ∼= PX(V) P

X X.

We can interpret X as a moduli space: it corresponds to the moduli prob-
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4.2. Relation between index and period

lem of pairs (V , ϕ) with ϕ : P ∼−→ P(V). This stack is a Gm-gerbe (we can think
of it as a B Gm-bundle over X). For us, this is like X but with a Gm group of
automorphisms at each point and a nontrivial twist over them.

Vector bundles on B Gm corresponds to representations of Gm; hence Gm
acts on the fibers of V . Here, since they have to be compatible with the identi-
fication ϕ, the automorphisms of a pair are just scalar multiplications.

4.9 proposition. The index of P divides n if and only if there is a locally free V on
X of rank n such that Gm is twisted (i.e., acts by scalar multiplication).

Denote with Shn
Y (tw) the moduli space of twisted locally free sheaves

of rank n over Y . If per(P) | n, then to show ind(P) = n we need only to
prove that Shn

Y (tw)(K) 6= ∅. We have translated the problem into a moduli
question. We are going to use this formulation to prove the two theorems. For
simplicity, we always assume what P→ X is proper.

Proof of de Jong’s theorem. Blow up one fiber X; then we obtain P̃ → X̃ and
X̃ → P1 is a family of projective bundles over curves parametrized by Pn:

P̃ X̃

P1

We are interested in the generic fiber

Pη Xη

Spec k(t)

The first thing to do is to base change to k(t); then we have a projective
bundle over an algebraically closed field, Pη → Xη . Tsen showed that in this
case Pη is trivial, therefore ind(Pη) | n and so Shn

Xη
(tw)(k(t)) 6= ∅.

But now we know that Shn
Xη
⊗k(t) is unirational and that our moduli

problem is geometrically rationally connected over k(t). Hence, by Graber-
Harris-Stan, it has a point, therefore ind(P) = ind(Pη) | per(P).

Proof of Lieblich’s theorem. Consider Shn
X(tw) over Fq. By de Jong’s theorem,

we know that over Fq it is nonempty. We have shown that Shn
X(tw) contains

a geometrically closed substack S. Over a finite field, the Lang-Weil estimate
implies that S has a 0-cycle of degree 1, therefore ind(P) | per(P).
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