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1 Introduction

Lecture 1 (1 hour)
August 30th, 2010We will apply deformation theory to study and discover some nontrivial bira-

tional properties of moduli spaces. In particular we will consider the moduli
space of curves. So in this first lecture we will not talk about deformation
theory, but describe the moduli space setup.

We will work over C; for any g ≥ 3, we consider Mg, the coarse mod-
uli space of stable curves of genus g; it is a projective compactification of
the coarse moduli space Mg of smooth curves of genus g. We are not really
interested on what “stable” means; the only thing we need is that the com-
pactification is modular.

The space Mg is normal, irreducible, of dimension 3g− 3. It has a “weak”
universal property: for every family C → S (i.e., any flat morphism whose
fibers are stable curves of genus g), there is an induced morphism ψS : S→ Mg
such that ψS(s) = [C(s)]. We called this “weak” because we don’t have in
general the converse: given ψ : S → Mg, in general there does not exist a
family C → S such that ψ = ψS. This problem arise when the curves in the
family have nontrivial automorphisms group.

∗s.maggiolo@gmail.com

1

mailto:s.maggiolo@gmail.com


1. Introduction

1.1 fact. There is a nonempty open subscheme M◦g ⊆ Mg and a (universal)
family C◦ → M◦g such that for every morphism ψ : S → M◦g, there exists a
family f : X → S with ψ f = ψ.

Note that we introduced the coarse moduli space of curves, but we are
really working on the moduli space (stack) of curves, since we work with
families all the time.

1.1 Generic curves

1.2 definition. Let f : C → S be a family of curves of genus g with S integral.
Let ψS : S→ Mg the induced morphism. We say that f has general moduli if ψ f
is dominant.

1.3 definition. A general curve of genus g (or a curve with general moduli) is a
general point of Mg.

So, if we have a generic point in the base of a family S with general moduli,
we also have a generic curve. We still have the problem to choose a generic
point of S; but with curves is easier, as in the following example.

1.4 example. Let g = 3 and C ⊆ P2 a nonsingular quartic. This gives us
a generic curve of genus g. But if we consider the quartic given by x0x3

1 +
x1x3

2 + x2x3
0 = 0, that is the Klein’s quartic (a very specific quartic with 168 au-

tomorphisms), this is not a generic quartic. Anyway, when we see the Klein’s
quartic inside the previous family, it is still a generic curve.

1.5 proposition. Let C be a general nonsingular curve of genus g. Then the follow-
ing hold.

1. for every L ∈ Pic(C), the natural map µL : H0(L)⊗H0(ωCL−1)→ H0(ωC)
is injective (this is called Petri’s conjecture, proved by Gieseker). In particular,
for every L of degree d with h0(L) = r + 1, the Brill-Noether number $ :=
g− (r + 1)(g− d + 2) is non-negative.

2. h1(L2) = 0 for every L with h0(L) ≥ 2 (this is a consequence of the previous
statement).

3. C does not have irrational involutions (i.e., a nontrivial morphisms to an irra-
tional curve).

4. C does not have nontrivial automorphisms.

Note that this proposition is actually a collection of important theorems.
We state two special cases of the inequality of the Brill-Noether number. If
r = 1, we have d ≥ 1/2g + 1; if r = 2, then d ≥ 2/3g + 2.

1.2 Birational geometry of the moduli spaces of curves

Let us review now some notions in the birational geometry of the coarse mod-
uli space of curves: Mg is
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1.3. Fibrations

1. rational for 0 ≤ g ≤ 6;

2. unirational for 7 ≤ g ≤ 14;

3. rationally connected for g = 15;

4. of Kodaira dimension −∞ for g = 16;

5. of Kodaira dimension at least 2 for g = 23;

6. of general type for g = 22 or g ≥ 24.

In particular, note that we don’t know anything for 17 ≤ g ≤ 21. This is
the motivation behind these lectures.

Unirationality is a weaker property than rationality, but from our view-
point it has the advantage that can be studied with families: a moduli space is
unirational if and only if there is a family with generic moduli with a rational
base.

1.6 definition. An integral variety M is uniruled if there is an integral Y with
dim Y = dim M− 1 and a dominant morphism Y×P1 → M.

So a variety is uniruled if for any generic point passes a line. Our aim is to
study this notion of uniruledness for M = Mg. Similarly to rationality versus
unirationality, uniruledness is a weaker property than ruledness that can be
studied with families.

1.3 Fibrations

1.7 definition. A fibration is a morphism f : X → S from a projective non-
singular surface X to a projective connected nonsingular curve S which is
surjective and has connected fibers.

As a notation, we use g for the genus of the general (smooth) fiber of f ,
and b for the genus of the base S.

1.8 definition. Let f be a fibration. We say that f is:

• relatively minimal if X contains no (−1)-curves in any fiber;

• semistable if all fibers have at most ordinary double points (i.e., nodes);

• isotrivial if any two general fibers are isomorphic.

Recall that E ⊆ X is a (−1)-curve if it is irreducible nonsingular and with
E2 = −1.

Let f : X → S be a fibration. A priori the induced morphism ψ f is defined
only over a nonempty open set of S; but since S is a curve and Mg is proper,
ψ f can be extended uniquely to a morphism S→ Mg that we will call also ψ f .
This morphism is non-costant if and only if f is non-isotrivial.

1.9 definition. A rational fibration is a fibration of the form f : X → P1.

3



1. Introduction

1.10 example. Let Y be a nonsingular surface and C ⊆ Y a nonsingular curves.
Assume that dim |C| ≥ 1 (i.e., the curve moves in its linear system). Let Λ ⊆
|C| be a pencil containing C. This pencil defines a rational map Y 99K P1; if
we blow up enough times Y, we have a morphism X → P1 from a variety
which is birational to Y.

1.11 proposition. Assume that C is a connected nonsingular curve of genus g,
moving in a nontrivial linear system |C| in a surface Y. Let Λ ⊆ |C| be a pencil
containing C. Assume that:

1. C has no nontrivial automorphisms;

2. C does not have rational involutions.

Then the following are equivalent:

1. Λ defines an isotrivial fibration;

2. Y is birationally equivalent to C×P1;

3. Y is a non-rational ruled surface.

Proof.

1⇒ 2) Let X → P1 the morphism constructed before, where X is birationally
equivalent to Y. By the structure theorem for isotrivial fibrations, there
is a nonsingular curve Γ and a finite group G acting on Γ and on C such
that X is birational to C× Γ/G, and the commutative diagram

X C× Γ/G

P1 Γ/G.

But in our case, the action of G on C is trivial, because there are no
nontrivial automorphisms of C by assumptions; therefore X is birational
to C× Γ/G ∼= C×P1.

2⇒ 3) Obvious.

3⇒ 1) Let D be a generic member of Λ. Then we have the diagram

Y Γ×P1,

D Γ
Φ

so Φ is a noncostant irrational involution; by the second assumption, Φ
is an isomorphism. Hence Γ ∼= C and the fibration is isotrivial.

Lecture 2 (1 hour)
August 31st, 2010 1.12 corollary. The following are equivalent:

1. Mg is uniruled;
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1.3. Fibrations

2. a general C of genus g moves in a nontrivial linear system on some non-ruled
surface.

Proof.

1⇒ 2) We will assume that every morphism to the moduli space corresponds
to a family. This is, as we said, not true in general for the coarse moduli
space, but it is for the moduli stack. If Mg is uniruled, then there exists
a dominant ψ f : Z×P1 → Mg; with our assumption, such a morphism
induces a family f : X → Z × P1. Let z ∈ Z be a general point; the
restriction of f to {z} × P1 is a morphism Xz → P1, that gives us the
pencil we needed.

2⇒ 1) Consider a general curve [C] ∈ Mg such that C ⊆ Y and dim |C| ≥ 1.
Let Λ ⊆ |C| be a pencil and f : X → P1 the associated rational fibra-
tion. Since C is general it has no nontrivial automorphisms or rational
involutions; then, by proposition 1.11, the family is non-isotrivial. Us-
ing the assumption that every morphism to Mg corresponds to a family,
this would already be the proof, because f would induce a morphism
P1 → Mg passing through [C]. But we could do better: note that to give
a general curve C in Mg moving in a nontrivial linear system on some
non-ruled surface is equivalent to have a diagram

X Y

V

f
β

such that Y → V is a family of surfaces, and for every v ∈ V, |X (v)| is a
curve in Y(v). Let L = OY (X ) and E = β?L, and assume for simplicity
that rk E = 2. Then E = O2

V and P(E) = V ×P1. So we have a rational
map Y 99K V × P1 and hence, blowing up, a morphism Ỹ → V × P1.
This morphism is a family of surfaces, each of them mapping to P1. For
every v ∈ V, the situation is the following:

Y := Y(v) Ỹ

{v} ×P1 V ×P1 Mg
dominant

and the left vertical morphism is a rational fibration.

Recall that the Kodaira dimension of Mg is at least 2 for g ≥ 22. Also, a
uniruled variety has negative Kodaira dimension. Hence Mg cannot be unir-
uled for g ≥ 22, and we have the following, that can be viewed as a theorem
belonging to surface theory.

1.13 corollary. A general curve of genus g ≥ 22 cannot move in a positive dimen-
sional linear system on any non-ruled surface.
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2. Numerical computations and deformation theory

2 Numerical computations and deformation theory

2.1 The sheaf Ext1
f

Suppose f : X → S is a fibration (not necessarily rational). We can associate to
f the functor Def f : Art→ Sets of infinitesimal deformations of f leaving the
base fixed. An element of Def f (A) is a diagram

X X

S S× Spec A

Spec A

f
flat

(note that S is deformed trivially).
Since f defines a morphism ψ f : S → Mg, we can think we are deforming

ψ f instead of f . Anyway, we will not pursue this viewpoint.
Consider the sequence

0→ f ?ωS → Ω1
X → Ω1

X/S → 0;

the first two terms are locally free, but the third is not in general, since the
map f is not necessarily smooth (note that instead the relative dualizing sheaf
ωX/S = ωX ⊗ f ?ω−1

S is invertible).
Dualizing the sequence, we get

0→ TX → f ?TS → N → 0,

where N := Ext1(Ω1
X/S

,OX). If f has reduced fibers, N has finite support; in
general N is supported on the singular locus of f .

2.1 theorem (Arakelov-Serrano). The morphism f is non-isotrivial if and only if
f?TX = 0. Moreover, h1(X, TX/S) = 0 if f is non-isotrivial and relatively minimal.

Let Ext1
f be the first derived functor of f?Hom and consider Ext1

f (Ω
1
X/S

,OX).
This is a sheaf over S such that, for every point p ∈ S,

Ext1
f (Ω

1
X/S,OX)⊗p C ∼= Ext1(Ω1

X(p),OX(p)),

and if X(p) is nonsingular, then this is equal to H1(X(p), TX(p)), a vector space
of dimension 3g− 3.

2.2 lemma. There is an exact sequence of sheaves over S:

0→ R1 f?TX/S → Ext1
f (Ω

1
X/S,OX)→ f?N → 0.

Moreover, the middle term is locally free of rank 3g − 3. Infact, Ext1
f (Ω

1
X/S

,OX) ∼=
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2.1. The sheaf Ext1
f

Hom( f?(Ω1
X/S
⊗ωX/S),OS) which is locally free being a dual.

2.3 proposition. The spaces Hi(Ext1
f (Ω

1
X/S

,OX)) for i = 0, 1 are respectively tan-
gent and obstruction spaces for Def f .

Sketch of the proof. We identify Def f with Def ψ f . It is well known that tangent
and obstruction spaces to the deformations of the morphism ψ f , which is a
morphism from a projective variety to a quasi-projective variety, are Hi(ψ?

f TMg
)

for i = 0, 1.
Since we are currently thinking of Mg as the moduli stack, it is smooth of

dimension 3g− 3 and the tangent space is exactly the space we need. Other-
wise, we can also prove directly this fact using cocycles.

If f is non-isotrivial, by Theorem 2.1 f?TX = 0, hence also f?TX/S ⊆ f?TX

is zero. Therefore, H1( f?TX/S) = 0.
We can interpret the sequence of Lemma 2.2 in this way: if f were a ram-

ified cover of a curve, we would have Riemann existence theorem that would
say that deforming the cover means deforming the branch points, and that we
can deform the branch points arbitrarily. Instead, in our situation we cannot
deform arbitrarily the singular points, because in general H1(R1 f?TX/S) is not
zero. Lecture 3 (1 hour)

September 2nd, 2010Consider a non-isotrivial fibration f : X → S and the sheaf Ext1
f (ΩX/S,OX);

then the sequence

(1) 0→ f ?ωS → Ω1
X → Ω1

X/S → 0

induces the exact sequences

0→ TX/S → TX → N = Ext1(ΩX/S,OX)→ 0, and

0→ R1 f ?TX/S → Ext1
f (ΩX/S,OX)→ f?N → 0.

Our goal now is to compute the Euler characteristic of the sheaf Ext1
f (ΩX/S,OX)

using these sequences.

2.4 proposition. We have

χ(Ext1
f (ΩX/S,OX)) = 11χ(OX)− 2K2

X + 2(b− 1)(g− 1).

Proof. We have Ext2
f (ΩX/S,OX) = 0, because the fibers are curves and this is

Ext2 on the fibers. So,

χ( f?N) = h0( f?N)− h1( f?N) =

= h0(N)− h1(N)−������
h0(R1 f?N)

where the last term is 0 because it is a part of the filtration of Ext2
f (ΩX/S,OX)

that vanish. So χ( f?N) = h0(N)− h1(N) = χ(N).
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2. Numerical computations and deformation theory

Now,

χ(R1 f?TX/S) = h0(R1 f?TX/S)− h1(R1 f?TX/S) =

= h0(R1 f?TX/S) +�����
h1( f?TX/S)− h1(R1 f?TX/S) =

= h1(TX/S)− h2(TX/S) = −χ(TX/S)

where we applied Serrano-Arakelov to show that h1( f?TX/S) = 0, and also for
the last equality (i.e., to show that h0(TX/S) = 0).

Then, using Lemma 2.2, we have

χ(Ext1
f (ΩX/S,OX)) = χ( f?N) + χ(R1 f?TX/S) =

= χ(N)− χ(TX/S) =

= χ( f ?TS)− χ(TX) =

= χ(OX) + 2(b− 1)(g− 1) + (10χ(OX)− 2K2
X),

where in the last equality we applied Riemann-Roch.

2.2 Inequalities for moving curves

Assume S = P1, i.e., f is a non-isotrivial rational fibration. In this case,
χ(Ext1

f (ΩX/S,OX)) = 11χ(OX) − 2K1
X − 2(g − 1) is the virtual dimension of

the deformation problem.

2.5 definition. A non-isotrivial rational fibration is called free is Ext1
f (ΩX/S,OX)

is globally generated.

Since we are working with rational base, we have a splitting

Ext1
f (ΩX/S,OX) ∼=

3g−3⊕
i=1

O(ai);

therefore, being free is equivalent to ai ≥ 0 for every i.

2.6 remark. Take f?Hom(•,Ox) of the exact sequence (1); we get

f?TX → TP1 → Ext1
f (ΩX/S,OX),

but the first term is zero by Serrano-Arakelov, hence TP1 = OP1(2) injects in
Ext1

f (ΩX/S,OX).

2.7 proposition. Assume that f is free. Then Def f is smooth of dimension at least
3g− 1.

Proof. By Remark 2.6, OP1(2) ⊆ Ext1
f (ΩX/S,OX), so at least one of the ai is at

least 2. Hence,

dim Def f = h0(Ext1
f (ΩX/S,OX)) ≥ (3g− 4) + 3 = 3g− 1.
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2.2. Inequalities for moving curves

2.8 theorem. Let C ⊆ Y be a curve with r := dim |C| ≥ 1, Λ ⊆ |C| a pencil, and
f : X → P1 be the corresponding fibration. If f is free, then

(2) 11χ(OY)− 2K2
Y + 2C2 ≥ 5(g− 1) + h0(OY(C)).

Moreover, if h0(KY − C) = 0 (i.e., if C is not contained in the canonical linear
system), the inequality becomes

(3) 10χ(OY)− 2K2
Y ≥ 4(g− 1)− C2.

Recall that 10χ(OY)− 2K2
Y (the left hand side of the last inequality) is the

virtual dimension of the moduli of the surface Y; so one way to explain this
inequality is that in order to have a rational fibration, the moduli space of the
surface has to be large enough.

Proof. The linear system Λ has C2 base points; let X be the blow up of Y at
those point; Proposition 2.4 implies

11χ(OX)− 2K2
X − 2(g− 1) =

⊕
h0(O(ai)).

But χ(OX) = χ(OY) (the characteristic is a birational invariant) and K2
X =

K2
Y − C2 (the canonical self-intersection decrease by one with each blow up),

so we obtain

11χ(OY)− 2K2
Y + 2C2 − 2(g− 1) =

⊕
h0(O(ai)).

We know that
⊕

h0(O(ai)) ≥ 3g− 1, but we need a better estimate.

Identify Pr = |C|, so that ζ : Λ = P1 ↪→ Pr = |C|. This morphism induces
the diagram

TP1

ξ?TPr OP1(2)⊕OP1(1)r+1

Ext1
f (ΩX/S,OX).

Our goal is to extend the vertical injection, finding the dashed arrow. The
situation is

X X Pr ×Y

P1 Pr

Ff

ζ
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2. Numerical computations and deformation theory

so we have exact sequences

0→ F?Ω1
Pr → Ω1

X → Ω1
X/Pr → 0,

F?TX → TPr → Ext1
F(ΩX/Pr ,OX ), and

0 = f?TX → TP1 → Ext1
f (ΩX/P1 ,OX);

if we apply ζ? to the second row, then we have vertical maps to the third
row, but the first and the third of these map are generically isomorphisms,
so ζ?F?TX is generically zero and ξ?TP2 = OP1(2) ⊕ OP1(1)r−1 injects in
Ext1

f (ΩX/S,OX). Therefore,

⊕
h0(O(ai)) ≥ 3 + 2(r− 1) + (3g− 3− r) =

= 3(g− 1) + r + 1 = 3(g− 1) + h0(OY(C)),

that is the inequality we need to prove (2).

To deduce the second inequality, we use Riemann-Roch on Y, with the
hypothesis h0(KY − C) = h2(OY(C)) = 0:

h0(OY(C)) ≥ χ(OY(C)) =

= χ(OY) +
1
2
(C2 − C · KY) =

= χ(OY)− (g− 1))− C2.

2.9 theorem. Let C ⊆ Y be a general curve such that dim |C| ≥ 1 and Y is non-
ruled. Then the fibration f : X → P1 defined by a pencil Λ ⊆ |C| is free. Therefore,
the result of the previous theorem holds.

Proof. We can construct the diagram

C C Y

Spec(C) V Mg

β

ψΦ

Φ

and we can assume V is reduced (actually, we may assume it is smooth).

Let L := OY (C) and E := β?L (note that E is locally free of rank r + 1).
Actually, we may assume r = 1, i.e. rk E = 2. If this is not the case, we can
pullback the whole diagram via G(2, E) → V, the Grassmannian of rank 2
sub-bundles of E , which has a canonical rank 2 vector bundle. Also, up to
shrinking V, we can assume E = O⊕2

Y , i.e., that E is trivial.

Blowing up the indeterminacy locus of the pencil Y , we get a morphism
F : X → P1 × V; over P1 × {v} consider also the fiber X. Now we have the
exact sequence

0→ F?Ω1
P1×V → Ω1

X → Ω1
X/P1 ×V → 0;
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2.3. Bounding the genera of curves

this induces a morphism K : TP1×V → Ext1
F(Ω

1
X/P1 ×V

,OX ). This morphism is
the Kodaira-Spencer map.

Let (p, v) ∈ P1 ×V; then we have

T(p,v)(P
1 ×V)→ Ext1

F(Ω
1
X/P1 ×V ,OX )(p,v) ⊗ k(p)→ Ext1(Ω1

X/(p, v),OX)

and this map is generically surjective.
Restrict now F to P1 × {v}. We have a splitting

TP1×V |P1×{v} = TP1 ⊕O⊕dim V
P1

so that this sheaf is globally generated on P1. Consider

Ext1
F(Ω

1
X/P1 ×V ,OX )⊗OP1×{v} → Ext1

f (Ω
1
X/P1 ,OX);

it is generically surjective, so the latter is generated somewhere, so being on
P1, this implies that it is globally generated.

2.10 example. We have 10χ − 2K2 ≥ 4(g − 1) − C2 if h0(K − C) = 0. For
Y = P2, the assumption is true, so we consider a nonsingular degree d curve
C ⊆ P2. The inequality becomes −8 ≥ 2d(d− 3)− d2 = d2 − 6d, i.e. d ≤ 4.
This recover the classical result that state that for a plane curve to have general
moduli, the degree has to be at most 4.

2.3 Bounding the genera of curves
Lecture 4 (1 hour)
September 3rd, 2010The hope is to use the inequalities of Theorem 2.8 to bound from above the

genus of curves with determined properties.

2.11 example. Let Y be a K3 surface, C ⊆ Y; then dim |C| = g, so, if we
deform the curve and the surface together, we get at most 19 + g parameters.
Hence 3g− 3 ≤ 19 + g, that is g ≤ 11. Instead, if we apply Theorem 2.8, we
get that, since χ(OY) = 2 and K2

Y = 0,

20 ≥ 4(g− 1)− 2(g− 1),

that is g ≤ 11 again.

2.12 proposition. Let Y be a surface with κ(Y) ≥ 0; let C ⊆ Y be a general curve of
genus g, moving in a linear system of dimension at least 1; then, if h0(KY − C) = 0,
we have g ≤ 6 + 5pg.

Note that for surfaces with geometric genus equals zero, the condition
h0(KY − C) = 0 is automatically satisfied, so we cannot find movable curves
of high genera in these surfaces.

Proof. Let Z be the minimal model of Y and σ : Y → Z the corresponding
morphism, factored as

Y = Zδ
σδ−→ Zδ−1 → · · · → Z1

σ1−→ Z.

11



2. Numerical computations and deformation theory

Consider Di, the image of C in Zi. We can assume that the center of σi is the
contraction of a singular point of Di−1.

Now, K2
Y = K2

Z − δ, so

C2 = 2(g− 1)− C · KY =

= 2(g− 1)− C · (σ?KZ + 2riEi) ≤
≤ 2(g− 1)− (σ(C) · KZ + 2δ) ≤ 2(g− 1)− 2δ.

Combining this inequality with Theorem 2.8, we get

10χ(OZ)− 2K2
Z − 2δ = 10χ(OY)− 2K2

Y ≥
≥ 4(g− 1)− C2 ≥ 4(g− 1)− (2(g− 1)− 2δ) =

= 2(g− 1)− 2δ,

hence 10χ(OZ)− 2K2
Z ≥ 2(g− 1). But K2

Z ≥ 0, so 10χ(OZ) ≥ 2(g− 1), and we
conclude using the fact that χ(OZ) ≤ pg + 1.

2.13 example (Bruno-Verra). The inequalities of Theorem 2.8 are quite sharp.
For example, there is a curve C ⊆ P6 of genus 15 and degree 19 that lies in a
surface Y = Q1 ∩ · · · ∩Q4 that is the intersection of four quadrics. The curves
moves in Y in a net, and we have C2 = 9, K2

Y = 16, χ(OY) = 8. The inequality
becomes

48 = 10χ− 2K2
Y > 4(g− 1)− C2 = 47.

Using some more time, we could prove that for elliptic surfaces we can the
genus of moving curves is at most 16. We devote instead the rest of the lecture
to the same estimate for surface of general type.

2.4 Bounding for surfaces of general type

2.14 theorem. Let Y be a surface of general type (not necessarily minimal), Z the
minimal model, C ⊆ Y a general curve of genus g. Assume dim |C| ≥ 2 and K2

Z ≥
3χ(OZ)− 10; then g ≤ 19.

The inequality in the assumption is the Castelnuovo condition, which is
frequently seen in surface theory. Instead, there is an unfortunate additional
request: the curve needs to move in a net instead of in a pencil.

Before proving the theorem we need to do a digression. Let C be a genus
g curve. The Clifford index of C is defined as

Cliff(C) := min{Cliff(L) | h0(L), h1(L) ≥ 2,

where Cliff(L) := deg L − 2 h0(L) + 2. It is clear that Cliff(C) ≥ 0, but the
property we need is that if C is general, then Cliff(C) = [g− 1/2].

Proof of the theorem. We can assume the same factorization of σ : Y → Z we
did before, with the same notations and properties. Let L := OC(σ

?KZ); then,
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2.4. Bounding for surfaces of general type

since KY = σ?KZ + ∑ riEi,

h0(ωCL−1) = h0(OC(C + KY − σ?KZ)) =

= h0(OC(C + ∑ riEi)) ≥ h0(OC(C)) ≥ 2,

by the assumption on the linear system |C|.
To use Theorem 2.8, we need to prove h0(KY − C) = 0. If this wasn’t true,

2C < KY + C, so OC(2C) ⊆ ωC. But this is impossible because the curve is
general, hence twice his line bundle cannot be special.

Moreover, σ?KZ − C ⊆ KY − C, so that h0(σ?KZ − C) ≤ h0(KY − C) = 0.
Using the sequence

0→ σ?KZ − C → σ?KZ → L→ 0,

we prove that h0(L) ≥ h0(σ?KZ) = pg ≥ 2.
Therefore, the line bundle L contributes to Cliff(C) and we get the follow-

ing results:

[g− 1/2] = Cliff(C) ≤ deg L− 2pg + 2 since L contributes to Cliff(C);

10χ(OZ)− 2K2
Z + 2δ ≥ 4(g− 1)− C2 by Theorem 2.8;

4χ(OZ) + 20 + 2δ ≥ 4(g− 1)− C2 using Castelnuovo condition;

4(1 + pg) + 20 + 2δ ≥ 4(g− 1)− C2 because 1 + pg ≥ χ;

28 + 2δ ≥ 4(g− 1)− C2 − 4pg + 4 transforming the previous one;

2(g− 1)− C2 ≥ deg L + 2δ since the former is degOC(KY);

28 + 2δ ≥ 2(deg L + 2δ− 2pg + 2) + C2 substituting the previous one;

28 + 2δ ≥ g− 2 + 4δ + C2 including the estimate on Cliff;

C2 ≥ 1/2g + 1 since OC(C) moves in a pencil.

Using this last inequality, we get 28− 2δ ≥ 3/2g + 1, that is g ≤ 19.

2.15 remark. We have not explored the case K2
Z < 3χ(OZ)− 10. In principle,

this case is easier, since such surfaces admit a double cover over a rational
surface, and we can reduce the problem to the rational case. In this case, we
will have to assume that dim |C| is at least 1 or 2 depending on how we will
manage to solve the rational case. The problem is that the rational case seems
not so easy.

We finish stating one last result.

2.16 theorem. Let C ⊆ P2 be a nodal curve, whose normalization is general of
genus g. Assume that dim |C| ≥ 1. Then g ≤ 9.

Blowing up the node, instead of having a singular curve moving in a fixed
surface, we have a smooth curve deforming together with a surface.
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