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1 Introduction

Lecture 1 (1 hour)
June 11th, 2012The story starts in 1857, with the famous paper of Riemann, in which he

defined a space parametrizing the isomorphisms classes of Riemann surfaces
of fixed genus. He computed correctly the dimension of this space, Mg, that
is 3g− 3 (when g ≥ 2).

In 1890, Clebsch and Hurwitz proved thatMg is connected using Hg,k, the
space of k : 1 covers of P1 of genus g; this space has two projections, to Mg

and to Pb = Symb P1 (since each cover has b = 2g + 2k − 2 simple branch
points). If we fix b points on P1, then to give a cover is equivalent to give the
monodromy, that is a morphism $ f : π1(P

1 \ {p1, . . . , pb} → Sk, with the basic
loops mapping to transpositions (to force the branch points to be simple).
Then Clebsch and Hurwitz proved that the covering space is connected. A
modern treatment of this can be found in the 1969 paper by Fulton.

In 1943, Teichmüller constructedMg in a completely different way, starting
from what it is now called the Teichmüller space and taking a quotient by the
mapping class group. It is constructed as an analytic variety.

∗s.maggiolo@gmail.com
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Cohomological and birational aspects of the moduli space of curves

Despite all the results proved on Mg, only in 1965 Mumford proved that
it actually exists (as an algebraic variety). Indeed, Riemann only defined it as
a set, which is not really useful by itself.

HavingMg defined as a variety gives some interesting properties. A min-
imalistic one is that if we have a flat family f : X → T of smooth curves of
genus g, then there should be an associated algebraic function m( f ) : T →Mg
such that m( f )(t) = [Xt] for each t ∈ T.

More sofisticated properties require discussing the difference between a
coarse and a fine moduli space. Consider the (contravariant) moduli functor
FMg : Sch → Sets that sends a scheme to the set of flat families over T of
curves of genus g. We say that a spaceMg is a fine moduli space of curves if
FMg is equivalent to the functor Hom(•,Mg).

Suppose we have a fine moduli spaceMg; then we have a special element
in Hom(•,Mg), namely idMg ; this would be associated to a universal family
of curves C → Mg that would induce every flat family of curves. But this
is not possible in general, because not every isotrivial family (with all fibers
isomorphic) is trivial. This has to do with the fact that curves have non-trivial
automorphisms.

1.1 example. Take a curve of genus at least 2 with an automorphism (for
example, a hyperelliptic curve); take a non-trivial subgroup G of Aut(C); then
G acts on all elliptic curves by translations. The quotient C× E/G is a fibration
to the elliptic curve E/G = D, whose fibers are all isomorphic to C, but it is
not trivial.

There are two ways now that one can walk through: the first started with
Mumford in the sixties, and consists of considering stacks instead of schemes,
where the functor FMg is representable. The other is to consider just the coarse
moduli space Mg. It is defined as a space that admits a natural transforma-
tion FMg → Hom(•,Mg) (this is the minimalistic property we asked before);
another property we want is that the points of this space are in a bijection
with the actual isomorphism classes of curves, that is, FMg(k) = Hom(k,Mg)
for every field k algebraically closed; finally, we require a universal property:
every natural transformation FMg → Hom(•, N), where N is a scheme, sat-
isfying the second property, factors through the natural transformation to
Hom(•,Mg).

Mumford proved that this coarse moduli space exists (as a quasi-projective
scheme) using geometric invariant theory (nowadays this can be proved more
economically using Kuranishi families). After Mumford’s proof, all the theo-
rems on the structure ofMg could be applied to the spaceMg constructed by
him.

2 Compactification

Consider the family y2 = x3 + tx2: it has as fiber a smooth elliptic curve for
each t, but for t = 0 it has a cusps. One would like to fill this point in a
consistent way. This has been done in 1969 by Deligne and Mumford using

2



Gavril Farkas (Humboldt)

stable curves. A stable curve is a nodal curve with finite automorphism group,
or such that every rational component intersect the rest of the curve in at least
three points. They proved that adding these curves is enough to produce a
compact space,Mg. Lecture 2 (1 hour)

June 12th, 2012A good way to visualize stable curves is by using their dual graph, with a
vertex for each irreducible component and an edge for every node. Each graph
correspond to a topological stratum ofMg, and these strata are parametrized
by moduli spaces of curves of lower genera. The dual graph language comes
really handy when you would like to compute the intersection of two strata
and degenerations of curves. Indeed, a graph corresponds to a stratum of
codimension equal to the number of edges in the graph, and if a graph H is
obtained from G collapsing an edge, we say that G is a specialization of H,
and we know that the stratum of G is in the closure of the stratum of H.

Why isMg complete? The answer lies in the stable reduction theorem, that
states that given a one dimensional family of curves (over a DVR, or a disk),
with all fibers but the one over 0 smooth, we can replace the fiber over 0 with
a stable curve (maybe after doing a finite base change). This is equivalent
to the statement that given a map from the disk without 0 to Mg, we can
always extend the map. The proof uses the standard theory of resolution of
singularity for a surface: after blowing up we can assume that the total space
of the family (which is a surface) is smooth, and that the central fiber has
normal crossing singularities, but it could be non-reduced. The finite base
change is needed exactly to make the central fiber reduced.

2.1 example. Suppose we have the family y2 = x3 + t; we have a cusp point
in the central fiber, so we blow up this point to obtain a smooth curve C̃
tangent to the exceptional divisor E1, which is not good enough (we want
normal crossing). The fiber is 2E1 + C̃. Blowing up again, we will have three
curves, E1, E2 and C̃, all converging to a point, and the fiber is C̃ + 2E1 + 3E2.
Blowing up again we obtain a nodal curve, E3 intersecting each of the other
three curves in a point; the fiber is then C̃ + 2E1 + 3E2 + 6E3. Now we have to
perform a base change, the smallest one is the lcm of the coefficients. In this
situation is easier to perform two base changes, of prime order (that is easier).
Geometrically, if the central fiber is ∑ aiDi, a base change of finite order r has
the effect of taking a branch cover over the divisor ∑(ai mod r)Di. So, taking
a base change of order 2 is like a taking a branched cover over C̃ + E2; these
two divisors survive with the same multiplicity; E1 will be replaced by two
components of multiplicity 1, and E3 survive (since the quotient of a rational
curve is rational) with multiplicity 3 = 6/2. Taking the base change of order
3 is now like taking a branch cover over C̃ + E′1 + E′′1 , and E2 get replaced by
three copies; E3 is substituted by a cover of order 3 of E3 ramified on 3 points,
that is, an elliptic curve. We can now blow down the −1 cirves and the only
components remaining are C̃ + Ẽ3. It is interesting to note that Ẽ3 is not a
random elliptic curve, that it is the Fermat cubic (j = 0).

2.2 example. A similar example is when we identify two points p and q on a
curve C, and we let q→ p. The family we can choose is C×C, identifying two
sections, one constant and one diagonal. Here we just need to blow up once
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the cusp, and perform no base changes. The additional component will be the
elliptic curve with j = ∞ with two points identified.

3 Deformation theory of stable curves

Recall that in the functor viewpoint (that is, we assume to work on the stack
Mg), FMg

(B) should be equal to Hom(B, Mg). When B is the spectrum of the

dual numbers C[t]/t2, we get the tangent space at the point [C] ∈ Mg, where
[C] is the fiber over (t). Associated to the map B → Mg we have a curve
π : C → B, and an exact sequence

0→ π?Ω1
B|C = OC → Ω1

C |C → Ω1
C → 0 ,

because B is a disk. Taking the long exact sequence, we obtain that the tangent
space is Ext1(Ω2

C,OC) = Ext1(Ω1
C ⊗ ωC, ωC) = H0(C, ωC ⊗ΩC), tensoring by

ωC and using Serre duality (recall that Ω1
C is the sheaf of differential forms,

whereas ωC is the dualizing sheaf that is locally free).
Globalizing, we can take the universal cover Cg → Mg and the cotangent

bundle will be T
∨

Mg
= π?(Ω1

π ⊗ωπ).Lecture 3 (1 hour)
June 12th, 2012

Let C be a stable curve, with singularities p1, . . . pδ, and let i : C̃ → C be
the normalization, where i−1(pi) = {xi, yi}. Then ωC = i?(ωC̃(∑ xi + yi)).
Locally around a node, the Kähler differentials are not locally free: if the node
is xy = 0, then y(xdy) = 0 (that implies that Ω1

C is not locally free). On the
other hand, ωC is locally free, and at a node it is generated by dx/x (if y = 0),
or viceversa.

We have then a local exact sequence

0→ Tors(Ω1
C)→ Ω1

C → ωC →
⊕

p∈Sing(C)

Cp → 0

(the last map is the residue map). We can globalize this sequence too: consider
again the universal curve and let Σ be the set of all points [C, p] of Cg such that
p is a node of C. It has codimension 2 in Cg. One can prove that Ω1

π = ωπ⊗ IΣ,
and so π?(ω⊗2

π ⊗ IΣ) = Ω1
Mg

.

For any curve inMg, we have that H0(ωC⊗ΩC)
∨

/ Aut(C) is a local model
around [C] forMg.

4 On unirationality

4.1 theorem (Severi, 1915). The spaceMg is unirational for g ≤ 10.

Unirationality is an important property for a moduli space: it means that
every curve can be described by some parameters and there are no “hidden”
equations on these parameters. Severi conjectured that this was true for all
genera, and this was a very believable conjecture.1

1Rationality is known to be true for g ≤ 6.
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To prove such a statement, one needs to construct a map from a rational
variety toMg. Recall that it is defined

Wr
d(C) = {L ∈ Picd(C) | h0(L) ≥ r + 1} ,

that for the general curve has dimension $ ≡ (r + 1)(g− d + r). For r = 2, we
obtain that the generic curve [C] ∈Mg has a gr

d where d ≥ (2g + 16)/3.

Now, take the embedding given by the gr
d, that has a nodal image Γ ⊆ P2

with δ = (d−1
2 ) − g nodes. If one could prove that the nodes are in general

position, then we are done. Consider the incidence correspondence

Σ = {(Γ, p1, . . . , pδ) | deg Γ = d, {p1, . . . , pδ} = Sing(Γ)} .

We have two maps π1 : Σ → Mg (the normalization) and π1 : Σ → (P2)
d.

Fibers of π2 are linear spaces, and if π2 is dominant then Σ is unirational, and
if d ≥ (2g− 16)/3 alsoMg is unirational.

This can only happen if dim Σ ≥ 2δ, but

dim Σ = 3g− 3 + g− 3(g− d + 2) + dim P GL(2 + 1) = 3d + g− 1 .

Putting all together, the three condition are satisfied only for g ≤ 10.

Recent development improved further the result, even if the conjecture is
known to be false.

4.2 theorem. Mg is unirational for g ≤ 14.

A curve of genus 14 has a finite number of g1
8 (a Catalan number). Let

L := KC(−g1
8) = g6

18: there are still finitely many L and we can use them
to construct an embedding in P6. We look at quadrics containing the image,
using S2 H0(L) → H0(L2). Since the target has dimension 36 + 1− 14 = 26
and the source (8

2) = 28, the generic curve lies in exactly 5 quadrics. Let C′ be
the residual curve (that is,

⋂
Qi \ C): in general C′ is a smooth curve of degree

25 − 18 = 14. In particular C′ is a non-special genus 8 curve with a g6
14. We

can go also the other way round: we take the incidence variety Σ = {(C′, V5)}
where C′ is a genus 8 curve in P6 of degree 14 and V5 ∈ G(5, H0(IC′(2)).
So we have projections to Pic14

8 (the universal Picard variety over M8) and
to M14 (reversing the construction of before). The first map is a Grassmann
bundle and so if Pic14

8 is unirational, then also M14 would be. Mukai solved
the question about Pic14

8 , and soM14 is unirational.

Carrying along the same precedure for g = 15, we obtain that M15 is
rationally connected. It is known then that M15 and M16 are uniruled, but
M17 is completely open. Lecture 4 (1 hour)

June 13th, 2012
We saw how we can compute the local structure ofMg using the universal

curve π : Cg → Mg. We had two sheaves, the relative dualizing sheaf ωC,
which is locally free, and the Kähler differential sheaf, Ω1

π , which is not locally
free. Moreover, we have ΩMg

= π?(ωπ ⊗Ωπ).
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4.1 Picard group ofMg

Recall that we can see Mg as Mg union ∆0, the locus of nodal curves with
one node, union ∆i, the locus of curves with two components, of genera i and
g− i, intersecting in a node, for i ∈ {1, . . . , bg/2c}. Note that we consider the
loci ∆i as closed, that is, we include in them all their degenerations. All the
strata ∆i are in codimension 1, and we call δi their classes in Pic(Mg). We need
to consider the Picard group with rational coefficients, because, for example,
the correct definition of δ1 is 1/2[∆1] (because of the involution in the elliptic
curve).

Apart from these boundary classes, there are other “tautological” classes
coming from the interiorMg. We can define κ1 := π?(c1(ωπ)2) ∈ H1(Mg), the
Mumford κ class (one can define similar classes using higher powers). Finally,
we define the Hodge bundle E := π?(ωπ), of rank g, where E[C] = H0(ωC).
The λ class are λ1 = λ := c1(E).

For genus at least 3, the Picard group of Pic(Mg) is generated by the
classes λ1, δ0, . . . , δbg/2c. The κ class is not needed, indeed the Mumford’s re-
lation states that κ1 = 12λ− δ, where δ = ∑ δi.

4.2 Computing the canonical class ofMg

We can use Grothendieck-Riemann-Roch to manipulate the identity Ω1
Mg

=

π?(ωπ ⊗Ω1
π): suppose we have a proper morphism f : X → Y, and a sheaf J

on X; we define f!F := ∑i≥0 (−1)iRi f?F ; then ch( f ,F) = f?(ch(F) · td(Ω∨
f )),

where td(Ω
∨
f ) = 1− c1(Ω f )

2 +
c2

1(Ω f )+c2(Ω f )

12 + · · ·.
In our case, F = ωπ ⊗Ωπ , R1π?F = 0 for dimensional consideration (the

stalk is a curve) and so π!F = π?F . Also, c1(ωπ) = c1(Ωπ), c2(Ωπ) = [Σ] ∈
H2(Cg). Applying GRR, we obtain (recall that Σ is the locus of nodes, hence
π?(Σ) = δ)

kMg
= c1(π?F) =

= π?

[
1 + c1(ωπ ⊗Ωπ) +

c2
1(ωπ ⊗Ωπ)− 2c2(ωπ ⊗Ωπ)

2
·

·
(

1− c1(Ωπ)

2
+

c2
1(Ωπ) + c2(Ωπ)

12

)]
=

= −π?(c2
1(ωπ)) +

π?(c2
1(ωπ))

12
+

δ

12
+ 2π?(c2

1(ωπ)) =

=
13
12

κ1 −
11
12

δ =

=
13
12

(12λ− δ)− 11
12

δ =

= 13λ− 2δ .

This computation was on the stack; for the space, we have a map Mg →Mg,
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branched along ∆1, and we can compute the result using Hurwitz formula:

kMg
= 13λ− 2δ0 − 3δ1 − 2δ2 − · · · − 2δbg/2c .

Using this computation, we can disprove the conjecture by Severi (thatMg
is unirational for all g) in the most spectacular way.

4.3 theorem (Harris-Mumford-Eisenbud). The space Mg is of general type for
g ≥ 24.

To prove such a theorem, in theory one would proceed trying to prove that
kMg

is effective (or big). There are serious issue on singularities ofMg, but we
will ignore it since the main result is that these singularities does not impose
adjunction conditions (by the Reid-Tai criterion).

The first fact is that the Hodge class λ is very positive, indeed is big and
nef on Mg. This is already non-trivial and derives from the Torelli problem
applied to stable curves (the map sends a curve to the Jacobian of its normal-
ization in the Satake compactification of Ag). One proves that this map t is
regular, and that λ is the pullback via t of O(1), hence λ is big and nef.

Now we need to look if (and for which genera) λ is positive enough. The
good thing to work on the moduli space of curves instead on a random vari-
ety is that we can define geometric sensible loci in Mg using some property
of curves that are not enjoyed by all curves, and if we have a good charac-
terization we can also compute the class of these loci. For example, we have
the loci Mr

g,d ⊆ Mg of curves admitting a gr
d. If the Brill-Noether number

$ = (r + 1)(g− d + r) is −1, thenMr
g,d is a divisor, and Eisenbud and Harris

computed its class, that is

[Mr
g,d] = c

(
(g + 3)λ +

g + 1
6

δ0 −∑ i(g− i)δi

)
.

Note that this formula does not depend on r and d.

4.4 example. For g = 3, r = 1, d = 2, for example, we can look atM1
3,2 = H,

the locus of hyperelliptic curves. We can write [H] = aλ − b0δo − b1δ1, and
we can compute the coefficients intersecting this locus with three other loci in
M3 of dimension 1. The first, C0 is a curve of genus 2 with x identified with
p and x moving on the curve, inside ∆0; the second, C1, is an elliptic curves
intersecting with a genus two curve in a moving point, and this locus is in ∆1;
the third, R is the locus of a curve of genus 2 intersecting a pencil of cubics in
a fixed point.

Consider C1: its intersection with λ is zero because when we use the Torelli
map, we forget about the marked point on the genus 2 curve and so the
point does not move anymore. The intersection with δ0 is 0 again, and the
intersection with δ1 is −deg kC = −2.

We can compute all the other intersections in similar ways, obtaining [H] =
9λ− δ0 − 3δ1.
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Assume to have a divisor D in Mg, whose support does not intersect ∆i;Lecture 5 (1 hour)
June 14th, 2012 then we can write its class as [D] = aλ − ∑ biδi, with all coefficients non-

negative. We define the slope of D as s(D) = a/ min bi ≥ 0: for example,
s(λ) = ∞. We also define s(Mg) := inf s(D) ≥ 0 (where the infimum is taken
over all effective divisors).

Note that whenever s(Mg) < s(kMg
) = 13/2,Mg is of general type; on the

other hand, if s(Mg) > 13/2, thenMg is uniruled. Indeed, in the first case we
know that we can write kMg

= αλ + βD + ∆, where ∆ is some combination
of boundary divisors; but then λ is big and nef, so in this case also kMg

is big
and nef. In the other case, we can use the estimate on the slope to prove that
the canonical divisor is not pseudo-effective and this solve the problem by a
theorem of Bouckson, Demaille, Peternell, and Paun.

By the theorem of Harris-Mumford, we know that s(Mr
g,d) = 6+ 12

g+1 , that

is less than 13/2 for g > 23, that is, Mg is of general type for g > 23. The
problem is constructing a divisor of slope less than 13/2, and they used the
Brill-Noether divisor.

4.5 conjecture (Slope, Harris-Morrison, 1990). The slope of Mg is at least 6 +
12

g+1 with equality for g + 1 composite and realized by the Brill-Noether divisor.

If the conjecture were true, it would prove thatMg is uniruled for g < 23.

5 Curves on K3 surfaces

Let S be a K3 surface with a curve C of genus g. Let {Cλ}λ∈P1 be a Lefschetz
pencil, that is, if we take two curves C1, C2 ⊆ S in the pencil, then they intersect
in 2g− 2 points. We blow up these points, obtaining a fibration over P1. This
construction induces a P1 insideMg.

The intersection R · λ is χ(Ŝ,OŜ) + g− 1 = g + 1, while R · δi = 0 for i > 0,
and so R · δ0 = R · δ. But then we have a formula for the Euler characteristic
of the fibration: e(Ŝ) = e(P1)e(F) + R · δ, therefore R · δ0 = R · δ = 6(g + 3).

We obtain in particular that R·δ
R·λ = 6 + 12

g+1 = s(Mr
g,d).

Now, consider the moduli space Fg of K3 surfaces polarized of degree
h2 = 2g− 2, of dimension 19; then there is Pg, the moduli space of K3 surfaces
together with a curve in |h|, of dimension g. This latter space have a map π1
to the former (forgetting the curve) and π2 to Mg (forgetting the surface). In
particular, π2(Pg) is the locus kg of curves on K3 surfaces.

5.1 proposition (Farkas-Popa). If D ⊆Mg is an effective divisor of slope 6+ 12
g+1 ,

then D ⊇ kg.

If the slope conjecture were true, then this statement would be empty. In
particular, for g ≤ 9 and g = 11, we have kg =Mg, hence the slope conjecture
is true. In genus 10, the map π2 has fiber dimension equal to 3 (Mukai), hence
k10 is a divisor and the only possible counter-example to the slope conjecture
in this genus. And indeed, it is a counterexample, because computing the class
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gives [k10] = 7λ− δ0 − 5δ1 − 9δ2 − 12δ3 − 14δ4 − 15δ5, so the slope is 7.

5.2 theorem (Farkas-Popa). The slope conjecture is false in genus 10.

6 Koszul cohomology

Lecture 6 (1 hour)
June 15th, 2012We have constructed a divisor k10, called the Koszul divisor, in M10, with

slope less than 6 + 12/(g + 1). How can one generalize such a divisor? The
answer is syzygies, and Koszul cohomology. Consider a projectively normal
curve C, L a line bundle with corresponding embedding C → P H0(L)

∨
=: P

∨
;

then we compute a minimal free graded resolution

· · · → F2 → F1 → Ic → 0 ,

so that Fi =
⊕

j∈∑ S(−i− j)bi,j . The Koszul cohomology can compute the
bi,j = bi,j(C, L) = dimC Tori(S(C, L), C), the i-th order syzygies of degree j.
The Koszul cohomology is constructed from the sequence

i+1∧
H0(L)⊗H0(Lj−1)

di−1,j−1−−−−→
i∧

H0(L)⊗H0(Lj)
di,j−→

di,j−→
i−1∧

H0(L)⊗H0(Lj+1) → · · · ,

where di,j( f1 ∧ · · · fi ⊗ s) = ∑l (−1)i f1 ∧ · · · f̂l · · · ∧ fi ⊗ fls. The Koszul coho-
mology is then ki,j(C, L) = ker di,j/ Im di+1,j+1. Indeed, bi,j = dim ki,j.

We can stratify Mg using syzygies. We fix integers g, r, d such that $ =
g− (r + 1)s = 0, where s = (g− d + r) (in particular, g = rs + s). We define
the space Gr

d = {(C, L) | L = gr
d}, that has a projection σ to Mg, and σ is

a generically finite covering. We define also the subspace Zg,i := {(C, L) ∈
Gr

d | ki,2(C, L) 6= 0}, that is, the space of couples for which we have non-linear
syzygies of order i. We want to consider [σ?|Zg,i ] ∈ H?(Mg).

We can expect this element to be a divisor onMg when H0(Ωi
Pr (i + 2))→

H0(Ω0
Pr (i + 2)|C) is a map between vector spaces of the same rank (in this

case, the rank is r = 2s + si + i). The Lazersfeld bundle of (C, L) is the rank r
vector bundle ML fitting in the exact sequence

0→ ML → H0(L)⊗OC
ev−→ K → 0 ;

using it we can reformulate the map as H0(
∧i MPr (2)) → H0(

∧i ML ⊗ Li),
since MPr = ΩPr (i); so we can reformulate Zg,i as the locus in Gr

d of (C, L)
such that that map is not an isomorphism.

Summing up, taking s, i ≥ 0, and putting r = 2s + si + i, g = rs + s, then
Ug,i = σ?(Zg,i) = {[C] ∈Mg | ∃L = gr

d : ki,2(C, L) 6= 0} is a virtual divisor on
Mg.

6.1 example. If i = 0, then r = 2s, g = s(2s + 1), d = 2s(s + 1); then Zg,0 =

{(C, L) ∈ Gr
d | S2 H0(L)

6∼−→ H0(2L)}. The first space has dimension (r+2
2 ), the
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second 2d + 1− g. In the case s = 2, i = 0, g = 10, then σ?(Z10,0) is the space
of curves such that there exists a g4

13 that maps the curve inside a quadric in
P4, and as a divisor is equal to 42k10.

“Virtual” divisor means that we have good reasons to hope that it is a divi-
sor, but there is no guarantee that it will be an actual divisor. In the examples,
it is not hard to prove that the constructed subvarieties are honest divisors,
but in general it is hard, even if it is enough to prove that a single curve does
not belong to the locus.

6.2 example. If s = 1, then r = 2i + 2, d = 4i + 6 = 2g − 2, g = 2i + 3. In
this case, there is only one gg−1

2g−2, the canonical bundle of C, hence in this
case Gr

d → Mg is the identity. The locus Zg,i of curves in M2i+3 such that
k1,2(C, kC) 6= 0 has attracted a lot of attention in the last years because of the
Green’s conjecture, stating that for every curve C, we have kp,2(C, kC) = 0 if
and only if p < Cliff(C), and Cliff(C) = b(g− 1)/2c = i + 1 for the generic
curve. If the conjecture holds, then Zg,i is, as a set, the locus of curves with a
gi

i+2, that is,M1
g,i+2. Remarkably, also the converse is true, so Zg,i 6=M2i+3 is

equivalent to Green’s conjecture for generic curves. This is a result of Voisin.

6.3 theorem. There is an explicit expression for the virtual class [σ?(Zg,i)] ∈
Hi(Mg), and its slope is always less or equal than 6 + 12/(g + 1), with strict in-
equality for s ≥ 2 and equality for s = 1.

6.4 example. Though the expression is quite long, in some cases it is nice: for
s = 2, r = 3i + 4, d = 9i + 12, g = 6i + 10, L = kC(−g1

3i+6), we have that the
slope is

s(σ?(Zi,0)) =
3(4i + 7)(6i2 + 19i + 12)
(i + 2)(2i2 + 31i + 18)

.

In the case g = 22, Z22 is the locus of curves admitting a g10
30 with k2,2 6= 0.

This is again in contrast with the slope conjecture, because the slope of this
divisor is 1665/256 = 6.5003 . . . < 6 + 12/23. But this is still not enough to prove
that M22 is of general type: recall that Mg is of general type if and only if
there exists D ⊆Mg with slope less than 13/2.

It is known that Koszul divisors are divisors for s = 1 and i = 0. In general,
the slope of the Koszul divisors always lie in the range (6 + 10/g, 6 + 12/g + 1):
the left endpoint is the slope of a pencil of 1-nodal curves on a K3 surface.Lecture 7 (1 hour)

June 15th, 2012 But, there is another candidate that succeed in proving thatM22 is of gen-
eral type. We consider $ = 1 and in particular linear systems g6

25. There are
∞1 of these systems, and G6

25 = {(C, L) | g(C) = 22, L = g6
25 = kC(−g2

17)}.
The fibers over M22 are one dimensional, called W6

25(C). On G6
25 one defines

two tautological bundles: E := S2 H0(L) and F := H0(L2). There is a mor-
phism χ : E → F given by the multiplication of sections and rk E = 28,
while rkF = 2 deg L + 1 − g = 29 (by Riemann-Roch). Hence E → F is
not injective, and we can look at the locus where the rank is 27, that is,
Z = {(C, L) | χ(E ,F) non-injective}. Another interpretation is that Z is the

10



Gavril Farkas (Humboldt)

limg→∞ s(Mg) = 0 limg→∞ s(Mg) > 0

Morrison, Chen, Pandharipande Farkas

Table 1: The bet on the limit of the slope.

locus of (C, L) such that there exists a g6
25 such that the embedded curve lies

on a quadric. This has expected codimension 2 in G6
25, so the image σ?(Z)

should be a divisor inM22.

6.5 theorem. The subvariety σ?(Z) is indeed a divisor on M22, that is, a gen-
eral curve C does not lie on a quadric in any of the ∞1 embeddings g6

25. Moreover,
s(σ?(Z)) = 17121/2636 = 6.4956 . . ., henceM22 is of general type.

Another interesting question is what is the asymptotic behaviour of s(Mg)
for g→ ∞. This would be interesting for the Schottky problem, that is, finding
a characterization of the image of the Torelli map t : Mg → Ag, where the
compactification Ag is such that the boundary is irreducible. Tai proved that
the limit of the slope of Ag is 0, and one could ask if this could be pulled back
on Mg. In this case one could hope to find another solution of the Schottky
problem.

We already saw that s(Mg) < 6 + 12/(g + 1) for g � 0. There has been
an attempt to find a lower bound by Harris-Morrison: they looked for a curve
Y ⊆ Mg that is sweeping the space; then every effective divisor D ⊆ Mg
must intersect the curve non-negatively. If [D] = aλ − bδ, this means that
aλ ·Y ≥ bδ ·Y, hence s(D) ≥ δ ·Y/λ ·Y and s(Mg) ≥ δ ·Y/λ ·Y. The problem
is that it is very hard to find such curves.

A possibility is to consider the space Hg,h of k : 1 covers of P1 with b =

2g + 2k− 2 simple branch points. This has two projections, π1 to Mg and π2
to M0,8. Letting pb move in P1 one get a moving curve F ⊆ M0,8, and so
a moving curve (π1)?π?

2 (F) on Mg. The computations here are very heavy.
The term δ · Y/λ · Y can be computed using the characters of Sk, and it can
be done for any finite genus. The heuristic says that its limit for g → ∞ is
576/5g = O(1), so the slope ofMg should be at least 576/5g, which is not so
very satisfactory, being so far from 6 + 12/(g + 1).

Another approach was done by Dawa-Chen using Teichmüller curves Tg,t,
that are analytic curves in Mg still defined in terms of covers. These curves
are rigid inMg, but there are many of them and their union is dense inMg.
So, s(Mg) ≥ inft Tg,t · δ/Tg,t · λ, and the interesting thing is that the limit of
this infimum is (heuristically) the same: 576/5g. This could be a justified by
the fact that both approaches uses covers.

The third attempt, from Pandharipande, uses the same approach of Harris-
Morrison but in a simpler way: he construct a moving curve as a complete
intersection of numerically ample effective divisors: he took the universal
curve π : Cg →Mg and the universal cotangent bundle ψ, which is nef. Then,
π?(ψ3g−3) is a moving curve, and we have that the slope of Mg is at least
60/(g + 4) and this is not an heuristic but an actual result.
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