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Cone Theorems

In Chapter 1 we proved the Cone Theo-
rem for smooth projective varieties, and we
noted that the proof given there did not work
for singular varieties. For the minimal model
program certain singularities are unavoidable
and it is essential to have the Cone Theorem
for pairs (X, ∆). Technically and historically
this is a rather involved proof, developed by
several authors. The main contributions are
[Kaw84a, Rei83c, Sho85].

Section 1 states the four main steps of
the proof and explains the basic ideas be-
hind it. There is a common thread running
through all four parts, called the basepoint-
freeness method. This technique appears
transparently in the proof of the Basepoint-
free Theorem. For this reason in section 2 we
present the proof of the Basepoint-free Theo-
rem, though logically this should be the sec-

ond step of the proof.
The remaining three steps are treated in

the next three sections, the proof of the Ratio-
nality Theorem being the most involved.

In section 6 we state and explain the rel-
ative versions of the Basepoint-free Theorem
and the Cone Theorem.

With these results at our disposal, we are
ready to formulate in a precise way the log
minimal model program. This is done in sec-
tion 7. In dimension two the program does
not involve flips, and so we are able to treat
this case completely.

In section 7 we study minimal models of
pairs. It turns out that this concept is not a
straightforward generalization of the minimal
models of smooth varieties 2.13). The defini-
tions are given in 3.50) and their basic prop-
erties are described in 3.52).

3.1 Introduction to the Proof of the Cone Theorem

In section 1.3, we proved the Cone The-
orem for smooth varieties. We now begin a
sequence of theorems leading to the proof of
the Cone Theorem in the general case. This
proof is built on a very different set of ideas.
Applied even in the smooth case, it gives re-
sults not accessible by the previous method;

namely it proves that extremal rays can al-
ways be contracted. On the other hand, it
gives little information about the curves that
span an extremal ray. Also, this proof works
only in characteristic 0. Before proceeding,
we reformulate slightly the Vanishing Theo-
rem 2.64):



3.1 Theorem.

Data

• Y smooth complex projec-
tive variety

• ∑ diDi Q-divisor
• L line bundle

Hypothesis

• D := L + ∑ diDi is nef
and big
• ∑ Di is snc

Thesis

Hi(Y,OY(KY + dDe)) = 0
for i > 0

3.2. We prove four basic theorems finishing
with the Cone Theorem. The proofs of these
four theorems are fairly intervowen in his-
tory. For smooth threefolds [Mor82] obtaines
some special cases. The first general result
for threefolds was obtained by [Kaw84b], and

completed by [Ben83] and [Rei83c]. Non-
vanishing was done by [Sho85]. The Cone
Theorem appears in [Kaw84a] and is com-
pleted in [Kol84]. See [KMM87] for a detailed
treatment and for generalizations to the rela-
tive case.

3.3 Theorem (Basepoint-free Theorem).

Data

• (X, ∆) proper klt pair
• ∆ effective
• D nef Cartier divisor

Hypothesis

∃a > 0 : aD − KX − ∆ is nef
and big

Thesis

|bD| is basepoint-free for b �
0

3.4 Theorem (Non-vanishing Theorem).

Data

• X proper variety
• D nef Cartier divisor
• G a Q-divisor

Hypothesis

• ∃a > 0 : aD + G − KX is
Q-Cartier, nef and big
• (X,−G) is klt

Thesis

H0(X, mD + dGe) 6= 0 for
m� 0

3.5 Theorem (Rationality Theorem).

Data

• (X, ∆) proper klt pair
• ∆ effective
• H Cartier, nef and big
• a positive integer

Hypothesis

• KX + ∆ not nef
• a(KX + ∆) Cartier

Thesis

• r(H) := max{t ∈ R | |H + t(KX + ∆) not nef} ∈ Q

• r(H) = u/v with u, v ∈ Z and 0 < v < a(dim X + 1)

3.6 Complement. Notation as above. Then
there is an extremal ray R such that R · (KX +

∆) < 0 and R · (H + r(KX + ∆)) = 0.



3.7 Theorem (Cone Theorem).

Data

• (X, ∆) projective klt pair
• ∆ effective

Thesis

• ∃ countably many curves Cj ⊆ X with
0 < −(KX + ∆) · Cj ≤ 2 dim X

• NE(X) = NE(X)(KX+∆)≥0 + ∑ R+[Cj]

Data

• H ample Q-divisor
• ε ∈ R+

Thesis

NE(X) = NE(X)(KX+∆+εH)≥0 + ∑
finite

R+[Cj]

Data

F ⊆ NE(X) a (KX + ∆)-negative extremal face
Thesis

∃! contF : X → Z morphism (the contraction)
to a projective variety such that (contF)?OX =
OZ and C ⊆ X is contracted iff [C] ∈ F

Data

L line bundle on X
Hypothesis

∀C : [C] ∈ F, L · C = 0
Thesis

∃LZ line bundle on Z such
that L ∼= cont?F LZ


