1 Introduction

Let E_Λ be the elliptic curve associated to lattice $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$, oriented in the sense that $\Im(\omega_1/\omega_2) > 0$. We know that $E_{\Lambda_1} \cong E_{\Lambda_2}$ if and only if $\Lambda_1 = a\Lambda_2$ for some $a \in \mathbb{C} \setminus \{0\}$.

1.1 Definition. A modular function is a function $M_{1,1} \to \mathbb{C}$ where $M_{1,1}$ is the space of elliptic curves over \mathbb{C}.

A modular function can be viewed as a function

$$F : \{\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2\} \to \mathbb{C}$$

with the property that $F(a\Lambda) = F(\Lambda)$ for all lattice Λ and $a \in \mathbb{C} \setminus \{0\}$.

s.maggiolo@gmail.com
1.2 Definition. A modular form of weight k, with $k \in \mathbb{Z}$, is a modular function F such that

$$(1) \quad F(a\Lambda) = a^{-k}F(\Lambda).$$

Let $SL(2,\mathbb{Z})$ the set of integral matrices with determinant 1; from now on, we will denote an element of $SL(2,\mathbb{Z})$ with $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Let $\Lambda := \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ a lattice; if $A \in SL(2,\mathbb{Z})$, $A(\omega_1,\omega_2)$ is just another basis for the same lattice. Let $\mathcal{H} := \{ \tau \in \mathbb{C} \mid \Im \tau > 0 \}$ be the half complex plane with positive imaginary part. The matrix group $SL(2,\mathbb{Z})$ acts on \mathcal{H} by $A(\tau) := \frac{a\tau + b}{c\tau + d}$.

Now let F be a modular form of weight k; we can associate to it a function $f : \mathcal{H} \to \mathbb{C}$ by $f(\tau) := F(\mathbb{Z}\tau \oplus \mathbb{Z})$; in this context, condition (1) ensure that

$$f(A(\tau)) = F \left(\mathbb{Z} \frac{a\tau + b}{c\tau + d} \oplus \mathbb{Z} \right) = F \left(\frac{1}{c\tau + d}(\mathbb{Z}(a\tau + b) \oplus \mathbb{Z}(c\tau + d)) \right) = (c\tau + d)^k F(\mathbb{Z}\tau \oplus \mathbb{Z}) = (c\tau + d)^k f(\tau).$$

Conversely, if we have $f : \mathcal{H} \to \mathbb{C}$ such that $f(A(\tau)) = (c\tau + d)^k f(\tau)$, then we can associate to it a function F as in $F(\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2) = \omega_2^{-k} f(\omega_1/\omega_2)$; this is a modular form. In particular one obtain that these correspondences are each the inverse of the other. So we can give the following equivalent definition.

1.3 Definition. A modular form of weight k, with $k \in \mathbb{Z}$, is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ satisfying (2), and not growing too fast as $\tau \to \infty$.

The last condition will ensure later that modular forms corresponds to sections of a line bundle on $\overline{\mathcal{M}}_{1,1}$. Another way to say the same thing is to define for every $f : \mathcal{H} \to \mathbb{C}$, $k \in \mathbb{Z}$, and $A \in SL(2,\mathbb{Z})$ the function $f|_{k,A} : \mathcal{H} \to \mathbb{C}$ with $f|_{k,A}(\tau) := (c\tau + d)^{-k} f(A\tau)$; then we request $f = f|_{k,A}$ for every A.

Why modular forms are useful in mathematics?

1. There are very few modular forms; the space of modular forms of weight k is a vector space of finite dimension.
2. They occur naturally in many fields of mathematics and physics.

2 The modular group

Consider the previously defined action of $SL(2,\mathbb{Z})$ on \mathcal{H}; since $-I$ acts trivially, we can also say that $\Gamma := SL(2,\mathbb{Z})/\{\pm I\}$ acts on \mathcal{H}. We define two special elements:

1. $S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, such that $S\tau = -\tau^{-1}$;
2. $T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, such that $T\tau = \tau + 1$.

Moreover, we have $S^2 = I = (ST)^3$ in Γ.

2
Now we can find a fundamental domain for the action of Γ:

$$D := \{ \tau \in \mathbb{H} \mid |\tau| \geq 1, -1/2 \leq \Re \tau \leq 1/2 \}.$$

We define $q := e^{2\pi i/3}$, so that $-\bar{q} = q^2 = e^{4\pi i/3}$. Pictorially, we have Figure 1.

2.1 PROPOSITION. The so defined D is a fundamental domain for the action of Γ on \mathbb{H}; in particular we have that:

1. every point in \mathbb{H} has a conjugate point in D with respect to the action;
2. if $\tau, \tau' \in D$ are conjugate and different, then $\Re \tau = \pm 1/2$ and $\tau' = \tau \pm 1$, or $|\tau| = 1, \tau' = -1/\tau$;
3. let $\tau \in D$ and $I(\tau) := |\{ A \in \Gamma \mid A \tau = \tau \}|$; then $I(\tau) = 1$ unless $\tau = i$ ($I(i) = 2$) or $\tau \in \{ q, -\bar{q} \}$ ($I(q) = I(-\bar{q}) = 3$).

We can translate this situation into the stack language; the closure of \mathbb{H}/Γ can be identified with the weighted projective space $\mathbb{P}(4,6)$; so we can define a generic $1/2 : 1$ map to \mathbb{P}^1 (with two special point, corresponding to i and q).

2.2 DEFINITION. Let $k \in \mathbb{Z}$; a weakly modular form of weight k is a meromorphic function $f : \mathbb{H} \to \mathbb{C}$ such that $f(A \tau) = (c \tau + d)^k f(\tau)$ for every $A \in \text{SL}(2, \mathbb{Z})$.

Let L be the space of meromorphic function $f : \mathbb{H} \to \mathbb{C}$; $\text{SL}(2, \mathbb{Z})$ acts on L in this way:

2.3 COROLLARY. A function f is weakly modular of weight k if and only if $f(-\tau^{-1}) = f(\tau)$ and $f(\tau + 1) = f(\tau)$ (e.g. if it is invariant with respect to S and T).

Given τ, write $q := e^{2\pi i \tau}$; consider a weakly modular form of weight k; then we can define $\tilde{f} : E^* \to \mathbb{C}$ (where E^* is the punctured unit disk) by $\tilde{f}(q) := f(\tau)$. In particular, $q \to 0$ corresponds to $\tau \to \infty$.

2.4 DEFINITION. We say that f is holomorphic at ∞ if \tilde{f} is holomorphic at 0.
3. **Examples**

In other words, \(f \) is holomorphic at \(\infty \) if we can write \(\tilde{f} = \sum_{n \geq 0} a_n q^n \), or, equivalently, \(f(\tau) = \sum_{n \geq 0} a_n (e^{2\pi i \tau})^n \). This is how we make formal the request that \(f \) does not grow too fast for \(\tau \to \infty \).

2.5 Definition. Let \(k \in \mathbb{Z} \); a weakly modular form \(f \) of weight \(k \) is a modular form of weight \(k \) if \(f \) is holomorphic on \(\mathbb{H} \) and at \(\infty \). In this case, we define \(f(\infty) := a_0 \); \(f \) is called a cusp form if \(f(\infty) = 0 \).

Most interesting properties of modular forms are encoded in the Fourier coefficients \(a_n \).

2.6 Remark. Since \(-I \in \text{SL}(2, \mathbb{Z}) \), for a modular forms we have \(f(\tau) = f((-I)\tau) = (-1)^k f(\tau) \); in particular modular forms can exists only for \(k \) even.

3 **Examples**

3.1 Example (Eisenstein series). Let \(\Lambda \) be a lattice in \(\mathbb{C} \); then \(\sum_{\lambda \in \Lambda} 1/|\lambda|^\sigma \) is convergent for every \(\sigma > 2 \). Let \(k \geq 2 \); we define the Eisenstein series of weight \(k \) as

\[
G_k(\tau) := \frac{(k-1)!}{2(2\pi i)^k} \sum_{{m,n \in \mathbb{Z}}'} \frac{1}{(m\tau+n)^k},
\]

where the prime means that we exclude the value \((0,0)\). If \(k > 2 \) the series is absolutely convergent, in the case \(k = 2 \) we have to prove convergence with some other method. Assume \(k > 2 \); then we can rearrange the terms of the series and this allow us to prove that \(G_k \) is a modular form of weight \(k \) and holomorphic on \(\mathbb{H} \); the last thing to check is holomorphicity at \(\infty \). Thanks to Euler identity, for \(z \in \mathbb{H} \) we have

\[
\sum_{n \in \mathbb{Z}} \frac{1}{n+z} = \frac{\pi}{\tan(\pi z)} = -\pi i - 2\pi i \sum_{n \geq 1} \frac{e^{2\pi i n z}}{1 - e^{2\pi i n z}} = -\pi i - 2\pi i \sum_{n \geq 1} e^{2\pi i n z}.
\]
We can also consider (it is no more than computing a derivative)

\[
\sum_{n \in \mathbb{Z}} \frac{1}{(n+z)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{n \geq 1} n^{k-1} e^{2\pi i n z}.
\]

Substituting in the Eisenstein series we get

\[
G_k(\tau) = \frac{(k-1)!}{2(2\pi i)^k} \left(\sum_{n \in \mathbb{Z}} \frac{1}{n^k} + \sum_{m \in \mathbb{Z}} \sum \frac{1}{(m \tau + n)^k} \right) = \frac{(k-1)!}{(2\pi i)^k} \left(\sum_{n \geq 1} \frac{1}{n^k} + \sum_{m \geq 1} \sum_{n \in \mathbb{Z}} \frac{1}{(m \tau + n)^k} \right) = \frac{(k-1)!}{(2\pi i)^k} \left(\sum_{n \geq 1} \frac{1}{n^k} + \sum_{m \geq 1} \frac{(-2\pi i)^k}{(k-1)!} \sum_{n \geq 1} n^{k-1} e^{2\pi i n m \tau} \right) = \frac{(k-1)!}{(2\pi i)^k} \zeta(k) + \sum_{m \geq 1} \left(\sum_{d | m} d^{k-1} \right) q^m = -\frac{B_k}{2k} + \sum_{n \geq 1} \sigma_{k-1}(n) q^n,
\]

where \(B_k\) is the \(k\)-th Bernoulli number and \(\sigma\) is the sum of divisor function; hence \(G_k\) is holomorphic at \(\infty\). In particular

\[
G_2(\tau) = -\frac{1}{24} + q + 3q^2 + \cdots,
\]

\[
G_4(\tau) = \frac{1}{246} + q + 9q^2 + \cdots.
\]

For \(k = 2\), the sum do not converge absolutely; we define

\[
G^*_k(\tau) := -\frac{1}{8\pi} \lim_{\varepsilon \to 0} \sum_{n,m \in \mathbb{Z}} \frac{1}{(m \tau + n + \varepsilon)^k} = G_k(\tau) + \frac{1}{8\pi \varepsilon^3}.
\]

The new series are absolutely convergent; but \(G^*_k\) is no more holomorphic since it depends explicitly on the imaginary part of \(\tau\). We can compute how the transformation property behaves on the correction term:

\[
G_k(A \tau) = (c \tau + d)^k G_k(\tau) - \frac{c(c \tau + d)}{4\pi i}.
\]

3.2 Example (Discriminant function)

We can define \(\Delta \colon \mathbb{H} \to \mathbb{C}\), the *discriminant function*, as \(\Delta(\tau) := q \prod_{n \geq 1} (1 - q^n)^{24}\), where as usual \(q = e^{2\pi i \tau}\). This converges on \(\mathbb{H}\); if it is modular, then it is a cusp form. Obviously \(\Delta(\tau + 1) = \Delta(\tau)\); define \(\Delta' := \frac{\delta}{\delta \tau}\) and let \(\Delta'/\Delta(\tau)\) the logarithmic derivative of \(\Delta\). We find
4. Zeros of modular forms

that

\[\frac{\Delta'}{\Delta}(\tau) = 2\pi i \left(1 - 24 \sum_{n \geq 1} \frac{nq^n}{1 - q^n} \right) = -24 \cdot 2\pi i G_k(\tau). \]

Then

\[\frac{d}{d\tau} \log \left(\Delta \left(-\frac{1}{\tau} \right) \right) = \frac{1}{\tau^2} \frac{\Delta'}{\Delta}(\tau) + \frac{12}{\tau} = \frac{d}{d\tau} \log(\Delta(\tau)\tau^{12}), \]

that is \(\Delta(-\tau^{-1}) = \text{const} \cdot \tau^{12}\Delta(\tau) \). If we put \(\tau = i \), then \(-\tau^{-1} = \tau \) and \(\tau^{12} = 1 \), so the constant must be 1 and \(\Delta \) is a cusp form of weight 12.

3.3 Remark. We denote the vector space of modular forms of weight \(k \) with \(M_k \) and the vector space of cusp forms of weight \(k \) with \(S_k \). It is obvious that if \(f_k \in M_k \) and \(f_l \in M_l \) then \(f_k f_l \in M_{k+l} \).

4. Zeroes of modular forms

If \(f \) is a meromorphic function on \(\mathbb{H} \) we can define its order at a point \(p \in \mathbb{H} \) as \(v_p(f) \), the integer such that \(\frac{f(\tau)}{(\tau - p)^{v_p(f)}} \) is holomorphic and non-zero at \(p \). If \(f \) is a modular form, then \(f(\tau) = (c\tau + d)^{-k}f(A\tau) \) for every \(A \in \text{SL}(2,\mathbb{Z}) \), so \(v_p(f) = v_{Ap}(f) \) for every \(A \in \text{SL}(2,\mathbb{Z}) \). In particular, if \(f = \sum_{n \geq 0} a_n q^n \), then we define \(v_\infty(f) := v_0(f) \).

4.1 Theorem. Let \(f \) be a modular form of weight \(k \), then

(3) \[v_\infty(f) + \frac{1}{2}v_i(f) + \frac{1}{3}v_q(f) + \sum_{p \in \mathbb{H}/\Gamma \setminus \{\rho,i\}} v_p(f) = \frac{k}{12}. \]

In the stack interpretation, we define modular forms as sections of a line bundle \(\mathcal{L}_2 \to \mathcal{M}_{1,1} \cong \mathbb{P}(4,6) \); then the theorem says that the degree of this line bundle is \(k/12 \).

Proof. We can assume that our modular form \(f \) has no zeroes on the boundary of the fundamental domain \(D \) (except maybe in \(i \) or \(q \)), since we can move slightly \(D \) until this is true.

Now we can integrate \(df/f \) on the boundary of \(D \). More formally, consider Figure 2a: first, we integrate on a path like \(\gamma \) in such a way that all internal singularities are inside \(\gamma \); by the residue theorem,

\[\frac{1}{2\pi i} \int_{\gamma} \frac{df}{f} = \sum_{p \in \mathbb{H}/\Gamma \setminus \{\rho,i\}} v_p(f). \]

We will compute now the same integrals piece by piece. For simplicity, we forget about the coefficient \(2\pi i \).
• The integral on the arc near q is just $-\frac{1}{6}v_q(f)$, since we can compute the integral along the path γ_q of Figure 2b getting $-v_q(f)$ (since we are going clockwise this time) and then, passing to the limit of the radius, we have to divide by 6 since the angle is $\pi/3$.

• The same applies to the integral on the arc near q^2.

• With the same method, the integral on the arc near i is $-\frac{1}{2}v_i(f)$.

• Using the transformation $\tau \mapsto q$, the horizontal segment becomes a whole clockwise circle around $q = 0$, so the integral on the segment is $-v_\infty(f)$.

• The two vertical path are obtained one from the other by applying T or T^{-1}; since $f(T\tau) = f(\tau)$ and they are in opposite direction, the sum of the two integrals is 0.

• The two remaining arcs are obtained one from the other by applying S or S^{-1}; this time, $f(S\tau) = \tau^k f(\tau)$, so

$$\frac{d f(S\tau)}{f(S\tau)} = k\frac{d \tau}{\tau} + \frac{d f(\tau)}{f(\tau)};$$

then, the sum of the two integral is

$$\int \left(\frac{d f(\tau)}{f(\tau)} - \frac{d f(S\tau)}{f(S\tau)} \right) = \int -k\frac{dz}{z} = -k\left(-\frac{1}{12} \right) = k\frac{1}{12}. $$

Comparing the two results we get

$$\sum_{p \in \mathbb{H}/\Gamma \setminus \{q\}} v_p(f) = -\frac{1}{3}v_q(f) - \frac{1}{2}v_i(f) - v_\infty(f) + k\frac{1}{12}. \quad \square$$

We recall that $M_k = 0$ for k odd, that is, there are no odd weighted modular forms; moreover, since $G_{2k} \in M_{2k}$ is a modular forms that is not a cusp form.
4. **Zeroes of modular forms**

(Bernoulli numbers are always non-zero) it follows that \(\dim M_{2k}/S_{2k} \geq 1 \); but \(S_{2k} \) is the kernel of the map \(f \mapsto f(\infty) \), so \(\dim M_{2k}/S_{2k} \leq 1 \); hence, \(M_{2k} = S_{2k} \oplus \mathbb{C}G_{2k} \).

4.2 Theorem.

1. If \(k < 0 \) or \(k \) is odd, then \(M_k = 0 \).

2. For \(k \in \{0, 4, 6, 8, 10\} \), \(S_k = 0 \) and \(M_k = \mathbb{C}G_k \); \(G_0 = 1 \).

3. Multiplication by \(\Delta \) gives an isomorphism \(M_{k-12} \to S_k \) for all \(k \).

Proof. The first statement follows from equation (3), since all left-hand side terms are non-negative. We have \(M_2 = 0 \) since \(1/6 \) cannot be written as a non-negative integral combination of \(1/2 \) and \(1/3 \); \(S_k = 0 \) for \(k < 12 \) is trivial since for a cusp form we have \(\nu_\infty(f) \geq 1 \).

Since \(\Delta \) has no zeroes on \(\mathbb{H} \), if \(f \in S_k \) we can write \(g := f/\Delta \) and \(g \) has weight \(k - 12 \). Now \(\nu_p(g) = \nu_p(f) \) for every \(p \in \mathbb{H} \) and \(\nu_\infty(g) = \nu_\infty(f) - 1 \), hence \(g \in M_{k-12} \). From this it follows the rest of the second statement.

4.3 Corollary. The dimension of \(M_k \) is

\[
\dim M_k = \begin{cases}
0 & \text{if } k < 0 \text{ or } k \text{ odd;} \\
[k/12] & \text{if } k \equiv 2 \pmod{12}; \\
[k/12] + 1 & \text{if } k \not\equiv 2 \pmod{12}.
\end{cases}
\]

4.4 Corollary. Let \(M_A := \bigoplus_k M_k \); then as a graded ring \(M_A \cong \mathbb{C}[G_4, G_6] \). Equivalently, a basis of \(M_k \) is \(\{G_4^aG_6^b \mid 4a + 6b = k\} \).

Proof. In multiple steps.

- If \(k \leq 6 \) this is obvious.

- Since \(M_{12} = \mathbb{C}G_{12} \oplus \Delta \) and we have \(\lambda_4 G_4 + \lambda_6 G_6 \in M_{12} \) for every \(\lambda_4, \lambda_6 \in \mathbb{C} \), then the statement is true for \(M_{12} \) and in particular \(\Delta \) is generated by \(G_4 \) and \(G_6 \).

- By induction on even \(k \) greater than 6; choose \(a \) and \(b \) such that \(4a + 6b = k \) and let \(g := G_4^aG_6^b \in M_k \); \(g \) is not a cusp form, so for every \(f \in M_k \) there exists \(\lambda \in \mathbb{C} \) such that \(f - \lambda g \) is a cusp form; but then \(f - \lambda g \in S_k = M_{k-12} \Delta \) and we conclude since both \(\Delta \) (by the previous point) and \(M_{k-12} \) (by induction) are generated by \(G_4 \) and \(G_6 \).

Define now \(E_k := G_k \cdot (-2k/8_k) = 1 + \cdots \).

4.5 Corollary.

\(E_4^2 = E_8 \).
By this corollary we can state the following non-trivial identity for every \(n > 0 \):

\[
\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(m)\sigma_3(n-m).
\]

Another identity is \(E_4^3 - E_6^2 = 1728\Delta \).

5 Theta functions

Let \(\Lambda \) be a lattice in \(\mathbb{R}^n \), such that \(v \cdot v \in \mathbb{N} \) for every \(v \in \Lambda \). We wonder how many vectors of a given length exist in \(\Lambda \). We define a generating function

\[
\Theta_\Lambda(\tau) = \sum_{n \geq 0} \left| \{ v \in \Lambda \mid v \cdot v = n \} \right| q^n,
\]

where again \(q = e^{2\pi i \tau} \). We can write the same function in a simpler way:

\[
\Theta_\Lambda(\tau) = \sum_{v \in \Lambda} q^{v \cdot v / 2}.
\]

We want to show that these are modular forms; to do this we make use of the Poisson summation formula.

Let \(\varphi : \mathbb{R}^n \to \mathbb{R} \) a smooth function rapidly decreasing at \(\infty \), that is, such that as \(\|x\| \to \infty \), it goes as \(\|x\|^{-c} \) for \(c \geq n \). The Fourier transform of \(\varphi \) is \(\hat{\varphi} : \mathbb{R}^n \to \mathbb{R} \) defined by

\[
\hat{\varphi}(t) = \int_{\mathbb{R}^n} \varphi(x) e^{-2\pi i t \cdot x} \, dx.
\]

Let \(\mu \) the volume of \(\mathbb{R}^n / \Lambda \) (equivalent to \(\det(a_i \cdot a_j)^{n/2} \) where \(a_i \) is a basis of \(\Lambda \)); let \(\Lambda^\vee \) be the dual lattice, that is the set of all \(w \in \mathbb{R}^n \) such that \(w \cdot v \in \mathbb{Z} \) for every \(v \in \Lambda \).

5.1 Theorem (Poisson summation formula).

\[
\sum_{v \in \Lambda} \varphi(v) = \frac{1}{\mu} \sum_{w \in \Lambda^\vee} \hat{\varphi}(w).
\]

Let \(t \in \mathbb{R}_{>0} \) and define \(\tilde{\Theta}_\Lambda(t) := \sum_{v \in \Lambda} e^{-\pi tv \cdot v} \).

5.2 Proposition.

\[\tilde{\Theta}_\Lambda(t^{-1}) = t^{n/2} \mu \tilde{\Theta}_\Lambda(t).\]

Proof. Fix \(t \) and put \(f(x_1, \ldots, x_n) := e^{-\pi(x_1^2 + \cdots + x_n^2)} \). It is easy to prove that \(f \) is a rapidly decreasing function and that \(\hat{f} = f \). Consider the lattice \(\sqrt{t} \Lambda \); its dual is \(1/\sqrt{t} \Lambda^\vee \) and its volume is \(t^{n/2} \mu \).

Applying the Poisson summation formula, we get

\[
\sum_{v \in \Lambda} e^{-\pi tv \cdot v} = \frac{t^{-n/2}}{\mu} \sum_{w \in \Lambda^\vee} e^{-\pi t^{1/2} w \cdot w}.
\]
This gives the statement. □

Assume from now on that \(\Lambda \) is a unimodular, even, integral lattice, that is, such that \(\Lambda' = \Lambda, v \cdot v \in 2\mathbb{Z} \) and \(w \cdot v \in \mathbb{Z} \) for every \(v, w \in \Lambda \).

5.3 Theorem.

1. \(\Theta_{\Lambda}(\tau) = \sum_{v \in \Lambda} q^{v \cdot \tau/2} \) is a modular form of weight \(n/2 \);
2. \(n \) is divisible by \(8 \).

Proof. Since \(v \cdot v \in 2\mathbb{Z} \), the definition of \(\Theta_{\Lambda}(\tau) \) is a \(q \)-development; moreover it is clear that it is invariant under \(\tau \to \tau + 1 \). We want to prove that \(\Theta_{\Lambda}(-1/\tau) = (\tau)^{n/2} \Theta_{\Lambda}(\tau) \); this is enough because, if \(8 \mid n \), the \(i \) go away and we remain with a modular form. Since \(\Theta_{\Lambda} \) is an analytic function, we can prove it just for \(\tau = it \) with \(t \in \mathbb{R}_{>0} \). Now, \(\Theta_{\Lambda}(it) = \sum_{v \in \Lambda} e^{-\tau v \cdot v} = \tilde{\Theta}_{\Lambda}(t) \); besides, \(\Theta_{\Lambda}(-1/\tau) = \tilde{\Theta}_{\Lambda}(-1/\tau) \). The statement then follows from Proposition 5.2.

Conversely, assume \(8 \nmid n \); replacing \(\Lambda \) by \(\Lambda^2 \) or \(\Lambda^4 \) we may assume that \(n \equiv 4 \mod(8) \), so \(\Theta_{\Lambda}(-1/\tau) = -\tau^{n/2} \Theta_{\Lambda}(\tau) \). We recall that from every function \(f \) on \(\mathbb{H} \) we can define \(f|_kA(\tau) = (c\tau + d)^{-k}f(A\tau) \) for \(A \in \text{SL}(2, \mathbb{Z}) \). In particular, we apply this to \(f = \Theta_{\Lambda}, k = n/2 \) and \(A \in \{S, T\} \). We obtain respectively \(-\Theta_{\Lambda}(\tau) \) and \(\Theta_{\Lambda}(\tau) \); but \((ST)^3 = I \), so

\[
\Theta_{\Lambda}(\tau) = \Theta_{\Lambda}|_{n/2, (ST)^3} = -\Theta_{\Lambda}(\tau),
\]

contradiction. □

5.4 Corollary. There is a cusp form \(f_{\Lambda} \) of weight \(n/2 \) such that \(\Theta_{\Lambda} = E_{n/2} + f_{\Lambda} \).

For \(n \equiv 0 \mod(8) \) it is quite easy to define a unimodular, even, integral lattice on \(\mathbb{R}^n \). For example, start with the lattice \(\Lambda_n := \{v \in \mathbb{Z}^n \mid v \cdot v \in 2\mathbb{Z}\} \) and consider \(\Lambda_n := \Lambda_n \oplus (1/2, \ldots, 1/2, \mathbb{Z}) \). This construction gives in particular \(\Lambda_8 = E_8 \).

5.5 Example. We have \(\Theta_{\Lambda_8} = E_4 \), since there is no cusp forms of weight 4. Besides, \(E_4 = 1 + 240 \sum_{n \geq 1} c_3(n)q^n \) and this gives us the number of lattice with the properties we wanted. In the same way, \(\Theta_{\Lambda_{16}} = \Theta_{\Lambda_8 \oplus \Lambda_8} = E_4^2 = E_8 \).

6 Modular forms for congruence subgroups

The group \(\text{SL}(2, \mathbb{Z}) \) contains copies of the integers: they are identified with the subgroups \(\Gamma(N) \) of matrices \(A \equiv I \mod(N) \); we have also the subgroups

\[
\Gamma^0(N) := \{A \in \text{SL}(2, \mathbb{Z}) \mid A \equiv \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \mod(N)\},
\]
\[
\Gamma_0(N) := \{A \in \text{SL}(2, \mathbb{Z}) \mid A \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod(N)\}.
\]

6.1 Definition. A subgroup \(G \) of \(\text{SL}(2, \mathbb{Z}) \) is called a congruence subgroup if \(\Gamma(N) \subseteq G \)
6.2 Definition. Fixed a congruence subgroup G, a holomorphic function $f: \mathbb{H} \to \mathbb{C}$ is called a modular form of weight k on G if:

1. $f|_{k,A} = f$ for every $A \in G$ (that is, $f(\tau) = (c\tau + d)^{-k}f(A\tau)$);

2. f is holomorphic at the cusps: for every $A \in \text{SL}(2,\mathbb{Z})$, there exists $l > 0$ such that $f|_{k,A} = \sum_{n\geq 0} a_n q^{n/l}$ with $a_n \in \mathbb{C}$ and $q^{n/l} = e^{2\pi i n\tau/l}$.

There is a geometric interpretation of the second condition.

- Let $\mathcal{Q} := \mathbb{Q} \cup \{\infty\}$; the action of $\text{SL}(2,\mathbb{Z})$ on \mathbb{H} extends to \mathcal{Q} by $Aa = \frac{ax+b}{cx+d}$ (these action sends \mathcal{Q} to itself). A cusp of \mathbb{H}/G is an element of \mathcal{Q}/G; in particular, if $G = \text{SL}(2,\mathbb{Z})$ we have only one cusp which we can imagine to be ∞. In general, \mathbb{H}/G can be compactified to a complete orbifold Riemann surface as $\mathbb{H}/G = \mathbb{H}/G \cup \{\text{cusps}\}$.

- Let $a \in \mathcal{Q}$ and $A \in \text{SL}(2,\mathbb{Z})$, with $A(\infty) = a$. Let $l \geq 0$ such that $T^l \in A^{-1}GA$; then
 \[(f|_{k,A})|_{k,T^l} = f|_{k,AT^l} = f|_{k,A}, \]
 that is, $f|_{k,A}$ is mapped to itself by $\tau \to \tau + l$. We fix l to be minimal with respect to his condition; this l is called width of the cusp. Now we can write $f|_{k,A} = \sum_{n \in \mathbb{Z}} a_n q^{n/l}$, and holomorphic at cusp a is equivalent to $a_n = 0$ for every $n < 0$.

- Geometrically, \mathbb{H}/G is a complex orbifold that has an obvious map φ to $\mathbb{H}/\text{SL}(2,\mathbb{Z})$; this map is a branch cover of degree $[\text{SL}(2,\mathbb{Z}) : G]$. The point ∞ in the target has as fiber the set of cusps in the source; moreover, the order of φ at a cusp is just its width (that is, at a, $q^{n/l}$ is a local coordinate).

6.3 Example. Consider $G := \Gamma(2)/\{\pm 1\}$; it can be proved that it is the free group $\langle \{1, i\} \rangle$. A fundamental domain is represented in Figure 3. Its cusps then are 0, 1, ∞; the width of ∞ is 2. As before, we define the set of modular forms to be $M_{k,G}$ with the subspace $S_{k,G}$ of cusp forms (that is, modular forms such that $f(a) = 0$ for every cusp a). They are finite dimensional vector spaces and we can compute their dimensions.

6.4 Example. The theta function Θ_{2i} is $\sum_{n_1, n_2 \in \mathbb{Z}} q^{n_1^2 + n_2^2}$. This is not even, so it is not a modular form; but a similar argument of the one did before shows that it is a modular form on some subgroup, precisely a modular form of weight 2 on $\Gamma_0(4)$.

6.5 Corollary.

1. Every positive integer is the sum of four squares;

2. $|\{n_1, \ldots, n_4 \in \mathbb{Z} | \sum n_i^2 = n\}| = 8(\sum_{d|n, 4|d} d)$.

11
Proof. The first statement is obvious; for the second, consider $8G_2(\tau) - 32G_2(4\tau)$; this is a modular form of weight 2 on $\Gamma_0(4)$. This is quite surprising since G_2 is not even; but we recall that $G_2^*(\tau)$ is not holomorphic but transforms as a modular forms; so the one we are considering is just $8G_2^*(\tau) - 32G_2^*(4\tau)$.

7 Hecke theory

On modular forms there is an algebra of operators (the Hecke operators) such that there is a basis of simultaneous eigenvalues for the operators.

Recall that we have an isomorphism of vector spaces between:

- complex functions F of oriented lattices $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ with $\Im(\omega_1/\omega_2) > 0$ such that $F(a\Lambda) = a^{-k}\Lambda$;

- holomorphic functions $f: \mathbb{H} \to \mathbb{C}$ such that $f(A\tau) = (c\tau + d)^{-k}f(\tau)$ for every $A \in \text{SL}(2, \mathbb{Z})$.

In particular we associate to a morphism F the function $f(\tau):= F(\tau\mathbb{Z} \oplus \mathbb{Z})$ and to a function f the morphism such that $F(Z\omega_1 \oplus Z\omega_2) := \omega_2^{-k}f(\omega_1/\omega_2)$.

Let F be a lattice function of weight k; define the operators $T_n := T_n^k$ by

$$T_n F(\Lambda) := n^{k-1} \sum_{\Lambda' \subseteq \Lambda | [\Lambda : \Lambda'] = n} F(\Lambda').$$

These T_n have an interpretation as morphisms of moduli space of elliptic curves with additional level structure. Note anyway that $T_n F$ is a lattice function of weight k. Thus, denoting the corresponding function with $f: \mathbb{H} \to \mathbb{C}$, we define $T_n f(\tau) := T_n F(\tau\mathbb{Z} \oplus \mathbb{Z})$. Then for $T_n F$ to be a lattice function of weight k means that $T_n f(A\tau) = (c\tau + d)^{-k}T_n f$. After some computation we obtain a description in terms of τ: $T_n f(\tau) = n^{k-1} \sum_{A \in \mathcal{M}_n} (c\tau + d)^{-k}f(A\tau)$. The summation indices means that A runs through a system of representatives of $\Gamma \setminus \mathcal{M}_n$, where \mathcal{M}_n is the set of 2×2 matrices with entries in \mathbb{Z} and determinant n, and SL$(2, \mathbb{Z})$ acts on \mathcal{M}_n by multiplication on the left.

If $f \in M_k$, then $T_n f$ is holomorphic on \mathbb{H}, plus, we already seen that it transforms as a modular forms; to check that $T_n f$ is a modular form, we
need to prove that it is holomorphic at \(\infty \); we do this writing down its \(q \)-development.

7.1 Theorem.

1. Let \(f \in M_k \) with Fourier development \(f(\tau) = \sum_{n \geq 0} c(n) q^n \); then

\[
T_n f(\tau) = \sum_{m \geq 0} \left(\sum_{d \mid n} \sum_{d, m \geq 0} d^{k-1} \right) c(nm/d^2) q^m.
\]

In particular, \(T_n f \in M_k \) and if \(f \) is a cusp form, then \(T_n f \) is.

2. \(T_n \) satisfies

\[
T_m T_n = \sum_{d \mid n} \sum_{d, m \geq 0} d^{k-1} T_{nm/d};
\]

in particular, \(T_n \) and \(T_m \) commute and if \((m, n) = 1\), \(T_n T_m = T_{nm} \).

Proof. A system of representatives of \(\Gamma \backslash \mathcal{M}_n \) is the set of matrices \((a b ; 0 d)\) such that \(ad = n \) and \(0 \leq b < d \). Then

\[
T_n f(\tau) = n^{k-1} \sum_{a, d > 0, ad = n} d^{d-1} \sum_{b = 0} d^{-k} f(\frac{ax+b}{d}).
\]

Substituting the \(q \)-development of \(f \) we obtain

\[
T_n f(\tau) = n^{k-1} \sum_{a, d > 0, ad = n} d^{d-1} \sum_{b = 0} d^{-k} \sum_{m \geq 0} c(m) e^{2\pi i \mu_{b/d}}.
\]

Note that

\[
\sum_{b = 0} d^{-1} e^{2\pi i mb/d} = \begin{cases} 0 & d \nmid m \\ d & d \mid m \end{cases}
\]

Now, observe that the second statement follows from the first by easy computations.

7.2 Remark. Observe that \(T_p T_p \circ T_p \circ \cdots = T_p^{n+1} + p^{k-1} T_p^{n-1} \) when \(p \) is prime; then if \(n = p_1^{n_1} \cdots p_l^{n_l} \), then \(T_n = T_{p_1^{n_1}} \cdots T_{p_l^{n_l}} \).

7.3 Definition. The Hecke operators are the operators \(T_n : M_k \to M_k \).

The Hecke operators are a set of commuting linear maps; it is possible then to search for common eigenvectors, that is, modular forms \(f \) such that \(T_n f = \lambda_n f \) for every \(n \geq 1 \).

7.4 Definition. Let \(f \in M_k \) be a common eigenvector of all \(T_n \); assume \(f(\tau) = \sum_{n \geq 0} a_n q^n \) with \(a_n = 1 \); then \(f \) is called a Hecke form.

The condition on \(a_n = 1 \) is to normalize the form. At first it appears that the parameter \(q \) is not so special; but it happens that the coefficients of the Fourier transform have a geometrical meaning; in particular, they are related to the eigenvalues.
7.5 corollary. Let $f = \sum_{n \geq 0} a_n q^n$ be a Hecke form; then $T_n f = a_n f$ for all $n \geq 1$.

7.6 corollary. Let $f = \sum_{n \geq 0} a_n q^n$ be a Hecke form; then $a_n a_m = \sum_{d | n, d | m} a_{d/m} d^{k-1} c(nm/d^2)$.

In particular, if $(n, m) = 1$, then $a_n a_m = a_{nm}$.

Proof. It is obvious by the formula of $T_n f(\tau)$. Since $T_n f(\tau) = \lambda_n f(\tau)$ and $a_1 = 1$, we can write

$$\lambda_n = \lambda_n a_1 = \sum_{d | n, d | 1} d^{k-1} c(nm/d^2) = a_n.$$

7.7 example. The Eisenstein series G_k is a Hecke form for $k \geq 4$; so it is Δ.

7.8 corollary.

$$\tau(n) \lambda(n) = \sum_{d | n, d | m} d^{11} c(nm/d^2).$$

7.9 theorem. The Hecke forms form a basis for M_k for all k.

8 L-series

Let $f = \sum_{n \geq 0} a_n q^n$ be a Hecke form; we can associate to it its L-series

$$L(f, s) := \sum_{n \geq 1} \frac{a_n}{n^s}$$

that converges absolutely and uniformly for $\Re s > k$ and is a holomorphic function for $\Re s > 0$. To prove these convergency results we need some machinery.

8.1 lemma. Let $f = \sum_{n \geq 0} a_n q^n \in M_k$; then $a_n \in O(n^{k-1})$ (that is, $a_n/n^{k-1} \to 0$ as $n \to \infty$).

8.2 corollary. We can write $L(f, s)$ as an Euler product:

$$L(f, s) = \prod_{p \text{ prime}} \frac{1}{1 - a_p p^{-s} + p^{k-1-2s}}.$$

Proof. From $a_n a_m = a_{nm}$ if $(n, m) = 1$, it follows that $a_{p_{1}^{n_{1}} \cdots p_{l}^{n_{l}}} = a_{p_{1}^{n_{1}}} \cdots a_{p_{l}^{n_{l}}}$; then $L(f, s) = \prod_{p \text{ prime}} \sum_{n \geq 0} a_{p^n} p^{-ns}$. We have to show that $\sum_{n \geq 0} a_{p^n} p^{-ns} = (1 - a_p p^{-s} + p^{k-1-2s})^{-1}$. We know that $a_{p^{m+1}} - a_p a_{p^n} + p^{k-1} a_{p^{m-1}} = 0$ for p prime; if we multiply the series with $1 - a_p p^{-s} + p^{k-1-2s}$, we see that the constant term, with respect to $t := p^{-s}$ is 1, that the second term is 0 and by induction we get that all other coefficients are 0 using the previous relation.

8.3 example. We can write the Riemann Zeta function $\zeta(s) = \sum_{n \geq 1} 1/n^s$ as $\prod_{p \text{ prime}} 1/(1 - p^{-s})$. We can compute $L(G_k, s)$; if p is a prime, $a_{k-1}(p) = 1 + p^{k-1}$.
and the denominator of the terms of the L-series is \(1 + \sigma_{k-1}(p)p^{-s} + p^{k-1-2s} = (1 - p^{k-1-s})(1 - p^{-s})\) and it follows that

\[
L(G_k, s) = \prod_{p \text{ primes}} \left(\frac{1}{1-p^s}\right) \left(\frac{1}{1-p^{k-1-s}}\right) = \zeta(s)\zeta(s-k+1).
\]

8.4 Theorem. If \(f\) is a Hecke form of weight \(k\), then \(L(f, s)\) has a meromorphic continuation to the whole \(\mathbb{C}\) and satisfies some functional equation; if \(f\) is a cusp form, then \(L(f, s)\) is an entire function; otherwise it has a simple pole at \(s = k\).

References