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1 Reviews

Lecture 1 (1 hour)
October 4th, 2010The idea of this lecture is to mix two area of algebraic geometry, namely inter-

section theory and algebraic stacks, and produce new results. We start with a
review of these areas.

1.1 Intersection theory

When we say scheme, we mean a scheme of finite type over a field K, which
most of the time is thought to be algebraically closed, but also most of the
time this request will not be necessary.

So let X be a scheme, V ⊆ X a subvariety, i.e. a closed, irreducible reduced
subscheme of dimension d. We define Zd(X) to be the free abelian group
generated by the classes subvarieties V of dimension d.

If Y ⊆ X is a closed, pure d-dimensional subscheme, then [Y] = ∑ mi[Yi],
where mi is the multiplicity of Yi along Y.

We have some functoriality properties:

1. if f : X → Y is a proper morphism, then there exists a map f? : Zd(X)→
Zd(Y) called proper pushforward;
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1. Reviews

2. if f : X → Y is a flat map of relative dimension r, then there exists a map
f ? : Zd(Y)→ Zd+r(X) that sends [V] to [ f−1V], called flat pullback.

We would like to do with these groups something like cohomology; in-
deed, usually one works not with cycle groups but with cycle classes groups,
there the equivalence relation is rational equivalence. To see why this is needed,
we propose the following example.

1.1 example. Let X be a scheme, L ∈ Pic(X); then we would like to define a
map c1(L) : Zd+1(X) → Zd(X). So, let W be a subvariety of dimension d + 1,
and s be a rational section of L|W ; then we can define c1(L) ∩ [W] by s0 − s∞.
If s′ is another section of L|W , then s′ = f s, where f ∈ K(W)?; in order to have
a well defined c1(L), we need to get rid of ( f )0 − ( f )∞. This is exactly what
we do to define cycle classes.

1.2 definition. We define Rd(X) ⊆ Zd(X) as the subgroup generated by
( f )0 − ( f )∞ for every (d + 1)-dimensional subvariety W ⊆ X and for every
f ∈ K(W)?.

1.3 definition. We define Ad(X) to be the d-th Chow group of X, as

Ad(X) := Zd(X)�Rd(X).

1.4 proposition.

1. We can define c1(L) : Ad+1(X) → Ad(X) as we unsuccessfully tried to do
above with cycle groups;

2. proper pushforwards and flat pullbacks pass to the quotient, and commute with
c1(L).

3. if π : E → X is a rank r vector bundle, then there exists a well defined homo-
morphism π? : Ad(X)→ Ad+r(E) that is an isomorphism.

1.5 corollary. If s : X → E is a section of a rank r vector bundle, then we can
define s! : Ad(E)→ Ad−r(X) to be the inverse of π?.

1.6 definition. Let i : X → P be a regular embedding of codimension r (i.e.,
locally, the ideal of X is generated by a regular sequence of length r). Hence
IX/I2

X is locally free of rank r and we can define the Gysin pullback i! in this
way: for every d-dimensional variety W ⊆ P, consider the cartesian diagram

V W

X P
i

note that we have to define i![W] ∈ Ad−r(V); let

CV/W := Spec
⊕
n≥0

Jn/Jn+1 → V,
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1.2. Algebraic stacks

where J = IV/W . Now, we have a map q?IX/I2
X → J/J2 and a diagram

CV/W q?NX/P

V s0

where s0 is the zero-section. Finally, we define i![W] := s!
0[CV/W ].

We reason to use this definition is the following.

1.7 definition. A morphism f : X → Y is lci of relative dimension r if locally
there exists a factorization f = p ◦ i with i : X → P a proper embedding of
codimension s, and p : P→ Y a smooth morphism of relative dimension r + s.

1.8 theorem. Let f : X → Y be a global lci morphism of relative dimension r. Then
f ! = i! ◦ p? does not depend on the choice of p and i. Moreover, f ! is functorial
and commuted with proper pushforwards, flat pullbacks, and Chern classes of vector
bundles. In fact, for every cartesian diagram

X′ Y′

X Y
f

f induces a homomorphism f ! : Ad(Y′)→ Ad+r(X′). One says that f ! ∈ Ar(X f Y)
is a bivariant class.

1.9 remark. The Gysin pullback, with the same definition, works in the fol-
lowing context: i : X → P a closed embedding and E a rank r locally free sheaf
on X with a surjection E � IX/I2

X (we replace NX/P by E := Spec Sym E, and
we get i!

E ∈ Ar(X → P)).

There are some directions we want to explore.

1. In Theorem 1.8, the global factorization seems a big hypothesis (even if
it is verified in many situation. We can ask ourselves if we can define f !

without a global lci morphism.

2. We may want to extend Theorem 1.8 as much as possible to algebraic
stacks.

3. We want to find a common generalization of Theorem 1.8 and Remark 1.9.
The answer will be virtual pullbacks.

1.2 Algebraic stacks

Algebraic stacks are in some way a natural extension of schemes, as long as
one consider the right definition of scheme. Indeed, defining algebraic stacks
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1. Reviews

starting from the definition of schemes as locally ringed topological spaces is
kind of unnatural, but we can define schemes also in the following way.

We can associate to a scheme X its functor of points hX : Affop → Sets

(where Aff is the category of finite type affine schemes over K). We define
hX(S) := Mor(S, X) and for every f : X → Y, hX( f ) : hX(S) → hY(S) as the
composition with f . This is the restriction of the complete functor of points
that goes from the opposite category of all schemes; this latter functor is fully
faithful by Yoneda, but one proves that also the one we considered before is
fully faithful.

So, we can define schemes as a full subcategory of Fun(Affop,Sets). The
actual properties that the functors have to satisfy to enter in the subcategory
of schemes differ when we change the kind of schemes we are interested in.
But there are some properties that have to be respected for any definition of
schemes we may want.

1. The sheaf property in the Zariski (étale, smooth, fppf) topology (also
called descent property): for every diagram

S2 S1

S1 S

p2

p1

sm

with g : S1 → X and p1 ◦ g = p2 ◦ g, there exists a unique f : S → X
inducing g.

2. There exists an open cover by affine schemes.

1.10 remark. In the definition of schemes, we can replace the second condi-
tion by the requirement of the existence of an étale affine open cover. With this
changes, we are defining algebraic spaces as defined by Artin.

1.11 definition. An algebraic stack is a pseudofunctor Affop → Groupoids such
that:

1. the sheaf property holds (one says this as being a stack);

2. there exists an étale affine open cover (Deligne-Mumford stack) or a smooth
affine open cover (Artin stacks).

A third definition with a flat affine open cover may be used, but Artin
proved that this is equivalent to the smooth affine open cover.

Note that this definition is not a real definition because there are other
properties that an algebraic stack has to satisfy; we just wrote those to high-
light the similarities with the definition of schemes.

1.12 example. Consider the functor M f
g : Affop → Sets where M f

g(S) is the
set of morphisms π : C → S that are smooth, projective, of relative dimension
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1.2. Algebraic stacks

1, with each fiber a connected smooth genus g curve, modulo isomorphisms,
given by cartesian diagrams

C′ C

S′ S

There are two problems:

1. the first is that if S = U ∪ V is an open cover for the functor, with
associated morphisms CU → U and C′V → V, then to glue we need to
choose an isomorphism CU∩V ∼= C′U∩V ; but changing this isomorphism
change the resulting glued object;

2. the second is that if we have an open cover S = U1 ∪U2 ∪U3, then we
can glue the corresponding families if and only if a cocycle condition is
satisfied.

In order to solve these problems, we have to define Mg : Affop → Groupoids,
where Mg(S) is defined in the same way as before, but without modding by
the isomorphisms, that are remembered by the groupoid structure. It turns out
that the so defined Mg is an algebraic stack, smooth, connected, of dimension
3g− 3, Deligne-Mumford if and only if g ≥ 2.

1.13 remark. If X is an Artin stacks, and x a geometric point (i.e., an object of
the groupoid X(L) for an algebraically closed field L), then by the property of
having a smooth affine open cover, we have that Aut(x) is an algebraic group.
If X is DM, then Aut(x) is étale (that in characteristic 0 implies that Aut(x) is
finite). For any X, the condition of Aut(x) being étale defines an open substack
(basically, the maximal DM substack of X).

1.14 example. Consider Mg, the functor defined as before, but allowing the
fibers to be nodal (not necessarily stable) and changing “genus” to “arithmetic
genus”. This is an algebraic stack, contains Mg as an open substack and it is
smooth, connected, of dimension 3g− 3. If we let Mg to be the DM locus in
Mg, then Mg is empty if g = 0, and a proper DM stack if g ≥ 1.

Lecture 2 (1 hour)
October 5th, 20101.15 example. We can consider Mg,n the functor defines as Mg, but where

each family C → S have sections s1, . . . , sn such that for every fiber Cp, the
points si(p) are distinct and lie in the smooth part of Cp. Morphisms are
required also to commute with the data of the sections. It turns out that Mg,n
is smooth, connected, locally of finite type, of dimension 3g − 3 + n; inside
it, the open locus where it is DM (in this locus the automorphisms groups
are finite, even in positive characteristic, thanks to a geometric argument) is
denoted Mg,n and it is proper and non empty if and only if 2g− 2 + n > 0.

1.16 remark. For morphisms of algebraic stacks, there is a valuative criterion
for properness and separatedness similar to the one that works for scheme.
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For example, f : X → Y is proper if ad only if for every DVR R, there is a
finite cover Spec R̃→ Spec R and a dashed morphism

η̃ η X

Spec R̃ Spec R Y

f

that commutes with the diagram.

1.17 remark. Groupoids are a 2-category, therefore also algebraic stacks form
a 2-category. Hence when we say that a diagram commutes we really mean
that they 2-commutes, and fiber products are 2-fiber products.

1.3 Key example

Let X be a scheme and G an algebraic group acting on X. Define [X/G] to be
the stack quotient by letting [X/G](S) be the set of diagrams

P X

S

where P → S is a G-torsor and P → X is G-equivariant, and the morphisms
are isomorphisms of G-torsors, commutative with the morphisms to X. One
can define pullbacks in a natural way.

This mimics what we do when we define the quotient groupoid of the
action of a group G on a set X, where the objects are the elements of X, and
the morphisms between x and y are the elements of G sending x to y. In order
to glue this local constructions, we have to use the torsors as we did globally.

Moreover, there is a 2-cartesian diagram

G× X X

X [X/G]

and the stack quotient behaves as if G were acting freely.

1.18 example. Consider a0, . . . , an ∈ Z>0, and the stack quotient[
An+1 \ {0}�Gm

]
,

over K = K, where λ · (x0, . . . , xn) := (λa0 x0, . . . , λan xn). The quotient is the
weighted projective space P(a0, . . . , an). It is a proper DM stack if and only if
each ai is prime to the characteristic of K. One can prove that, over the complex
numbers, P(4, 6) ∼= M1,1.
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2 Mixing

2.1 Intersection theory for algebraic stacks

Starting in the end of the eighties, intersection theory has been extended to
a broader setting, DM stacks in the beginning and during the years also to
Artin stacks. The following theorem sums up the results that allow us to use
intersection theory with algebraic stacks almost like we do with schemes.

2.1 theorem (Vistoli, Edidin-Graham (Totaro), Kresch). The Chow groups A?

can be defined for a large class of algebraic stacks. Flat pullbacks work, proper push-
forwards work with rational coefficients (because the degree of a 0-cycle on a stack
is in general a rational number). The Gysin map for regular embeddings (hence for
global lci morphisms) also works.

2.2 Algebraic stacks for intersection theory

Let X, Y be schemes, f : X → Y a morphisms that factors as a regular embed-
ding i : X → P and a smooth morphism p : P → Y. For W → Y, consider the
cartesian diagram

X P Y

V WP W

i p

q

Then we have f ![W] := s!
0[CV/Wp

] for s0 : V → q? NX/P. But if f is already a
regular embedding, then f ![W] = s̃0[CV/W ] with s̃0 : V → q?NX/Y. In this case,
Fulton proved that there are natural exact sequences of cones, for examples

0→ i?TP/Y → NX/P → NX/Y → 0,

that stays exact when we pullback to V via q. A second exact sequence is

0→ q?i?TP/Y → CV/WP
→ CV/W → 0,

and we have injective morphisms from the latter to the former.
When we remove the assumption that f is a regular embedding, we still

have 0→ i?TP/Y → NX/P, but this now continues to I/I2 → ΩP/Y|X . Note that

[ I/I2︸︷︷︸
−1

→ ΩP/Y|X︸ ︷︷ ︸
0

] ∼= τ≥1L•f

is the truncation of the cotangent complex.
Let us recall some properties of the cotangent complex. When we have a

composition h : X f Y g Z, then we have a sequence

f ?Ωg → Ωh → Ω f → 0;
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2. Mixing

we interpret the lack of a zero on the left as the effect of the distinguish triangle

f ?L•g → L•h → L f
+1−→

in D≤0
coh inducing the sequence, where h0(L•h) = Ωh and h0(L•f ) = Ω f .

Therefore, f : X → Y is lci if and only if L•f is perfect (of perfect amplitude

contained in) [−1, 0], and locally L•f is isomorphic to E−1 → E0 with E i locally
free of finite rank.

2.2 definition. The normal vector bundle stack is NX/Y = N f := [E1/E0], where
Ei = Spec Sym E i (note that E0 → X is a sheaf of abelian groups).

This works in a much larger generality.

2.3 theorem. There exists a notion of abelian cone stack (i.e., that is locally the stack
quotient of Spec SymF by a vector bundle, where F is a coherent sheaf), and there
exists an equivalence of categories

D[−1,0]
coh (X)→ Ho(abelian cone stacks over X),

mapping complexes perfect in [−1, 0] to vector bundle stack.

2.4 remark. Deligne in exposé 18, SGA4, has a similar theorem which gives
an equivalence between the derived category of abelian sheaves over X to the
homotopy category of Picard stacks over X. To define Picard stacks, Deligne
does not start with the usual definition of groups replacing sets by groupoids,
but with a slightly different definition, that allows himself to keep track of as
less 2-arrows as possible. Indeed, he insists in associativity and commutativity,
but after that he requires that for every g ∈ G, ·g : G → G is an isomorphism.
In the groupoids setting, this translates naturally to the requirement that ·g
are equivalences.

2.5 remark. It is easy to see that there exists an equivalence of categories from
the opposite of coherent sheaves over X to abelian cones over X, sending F to
Spec SymF .

2.6 corollary.

1. For every lci morphism f : X → Y of relative dimension r, the abelian cone
stack associated to L•f is a vector bundle stack of rank r.

2. for every cartesian diagram

V W

X Y

q

the abelian cone stack NV/W associated to τ≥−1L•V/W
injects into q?NX/Y; more-

8



2.2. Algebraic stacks for intersection theory

over there is a natural closed embedding

CV/W ↪→ NV/W ↪→ q?NX/Y.

2.7 theorem. Let f : X → Y be a DM type morphism of algebraic stacks which
is lci, and let W be a variety of dimension d (or more generally a pure dimensional
algebraic stack of dimension d) with the cartesian diagram

V W

X Y

q

then f ![W] ∈ Ad+r(V) is defined to be s!
0([CV/W ]) with s0 : V → q?NX/Y the zero

section.
Lecture 3 (1 hour)
October 7th, 2010We can sum up what we did (in the contest of scheme) in the following

way.

2.8 theorem. For every closed embedding i : X → Y, let NX/Y = Spec Sym I/I2 and
CX/Y = Spec

⊕
In/In+1 (recall that there is a closed embedding CX/Y ↪→ NX/Y), then:

1. if Y is of pure dimension d, then so is CX/Y;

2. for every cartesian diagram

V W

X Y

j

q

we have CV/W ↪→ q? CX/Y ↪→ q? NX/Y;

3. for every NX/Y ↪→ E, with E a rank r vector bundle (equivalently, E � I/I2),
we get i!

E ∈ Ar(X → Y).

Previously, we have seen the translation to algebraic stacks. If f : X → Y is
a DM type morphism of algebraic stacks, then we have NX/Y, the abelian cone
stack associated to τ≥−1L•f , that contains as a close substack CX/Y, as induced
by Fulton’s construction. Moreover, the first two properties hold unchanged,
while in the third we require NX/Y ⊆ E, with E a vector bundle stack, or
equivalently ϕ→ τ≥−1L•f perfect of rank r, and we get f !

E ∈ Ar(X → Y).
More analogies hold; for example there is a degeneration to the normal

cone.

2.9 proposition (Manolache). The map f !
E is functorial.

2.10 corollary. We get an easy proof of Costello’s pushforward (that has enumera-
tive geometry applications).
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2. Mixing

2.11 definition.

1. The morphism f !
E is called the virtual pullback defined by the obstruction

theory (ϕ, E•).

2. If Y is pure dimensional of dimension d, then [X]vir := f !
E[Y] ∈ Ad+1(X)

is called the virtual fundamental class.

2.3 How does one apply this?

If M and M are moduli spaces with a forgetful map f : M → M, and p ∈
M, then from deformation theory we have three vector spaces Ti

p with i ∈
{0, 1, 2}.

For example, if M is just one point and M is the moduli space of smooth
projective varieties, and p ∈ M(K = K) corresponds to a variety V, then we
have T1

p = H1(V, TV). The idea now is that f is of DM type at p if and only if
T0

p = 0. In particular, if T0
p = 0 for every p ∈ M, then the expected dimension

of M is dim T1
p − dim T2

p, which is constant and we get an obstruction theory.
The aim is to use virtual classes to define numerical invariants. To start,

one need a proper moduli space.

2.12 example. Let Mc2
1,c2

be the moduli space of surfaces of general type over

C with given invariants; for every surface V, T0
[V]

= H0(V, TV) = 0, hence we

can compute dim T1−dim T2 using Riemann-Roch. The problem is that Mc2
1,c2

is not proper, and there are no clues on how to extends the obstruction theory
to the border.

The situation is better in the moduli space of maps over the complex num-
ber. Recall that we have that Mg,n ⊆ Mg,n is the inclusion of the DM locus.
One can prove that Mg,n is proper, in any characteristic using stable reduction,
or over C using the minimal models of surfaces of Castelnuovo.

Consider a smooth projective variety V, and fix a continuous homomor-
phism d : Pic(V) → Z. We can then define Mg,n(V, d): the objects over S
are tuples (C, π, si, f ), with (C, π, si) ∈ Mg,n(S), and f : C → V, such that
d = degC f ? fiberwise; the morphisms are morphisms on the curves that com-
mute with every data.

Then, we define Mg,n(V, d) as the DM locus of this stack, and one can
prove with the same methods that this is proper. Moreover, one get that at the
point (C, π, si, f ), we have T0 = 0 and Ti = Hi−1(C, f ?TV).

From the work of Chen and Ruan in the symplectic case, Abramovich,
Vistoli, and others in the algebraic case, we have a generalization of Gromov-
Witten invariants, where we replace V with a smooth projective DM stack.
The obstruction theory is the same, and to get properness, we have to replace
Mg,n with Mtw

g,n, where we allow stacky points along si and at nodes.
In the case that V is not projective, in some cases one can do the same when

there is a torus action on V. In this situation, the positive dimensional orbits
are all tori, so they give no contribution to integrals having Euler characteristic
0. To make this more precise, one use localization theorem, that states that one
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2.3. How does one apply this?

can work only with the fix locus of the action. The virtual localization theo-
rem state that the same works with virtual pullbacks and virtual fundamental
classes.

If V is singular, Jun Li extended to algebraic geometry the degeneration
formula (first found in symplectic geometry). The idea is to degenerate one
complicated variety to two simpler varieties meeting transversally along a
divisor. More precisely, one construct a proper flat morphism W → B 3 b0,
smooth over B \ {b0}, with W smooth and B a smooth curve; all such that the
generic fiber is V and the special fiber is the reducible one.

With this formula, one can define Mg,n(W/B, d), where objects are mor-
phisms C → S commuting with W → B. In particular, Mg,n(Wb, d) is com-
posed of the fibers over b as before, if b 6= b0; instead, if b = b0, Mg,n(Wb, d)
is proper, and H1(C, f ?TWb) is replaced by Ext1( f ?L•Wb

,OC). The problem is

that there may be a T3 coming from the Ext2, if a component of C maps to
D. The idea of Jun Li is to change compactification: when problems arise, we
can blow up such component; in practice, this can be achieved blowing up D
inside W. The trick is to allow blown up maps, but not too much; this different
compactification yields a smooth Artin stack.

A problem is that to get properness, he has to impose predeformability con-
ditions. Let C = C1 ∪ C2 be a reducible curve; then he impose that the only
thing that can be mapped to D are nodes (i.e., each component of the curve
goes either to V1 or to V2). Moreover, multp f−1(D) has to be the same in C1
and in C2. This condition implies that, at least locally, the map deforms to the
nearby smooth fibers. This approach had been pursued also by Caporaso and
Harris in the definition of Gromov-Witten invariants for P2 and its blown ups.

We have seen that obstruction theory comes from deformation theory, in
particular from the deformation theory of the map Mg,n(V, d)→Mg,n. When
we consider Mg,n(V, d) ⊆Mg,n(V, d), this is open and to does not pose prob-
lems. Instead, predeformability is not an open condition. This is the main
technical problem of the paper, and Jun Li solve this using log geometry.

Another approach is to use moduli spaces of sheaves, where over rea-
sonable assumptions one has Ti

[F ]
= Exti(F ,F). A technical problem is that

T0 is always non zero, but this can be solved using rigidification, or taking
determinants. In this way, considering simple sheaves over a smooth proper
surface, one constructs algebraic Donaldson invariants. In the threefold case,
we have Donaldson-Thomas invariants, and also Pandharipande-Thomas. The
relations amongst these invariants is largely unknown.
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