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1 Introduction

Lecture 1 (1 hour)
August 30th, 2010This will be an introductory course. For this reason, every scheme will be of

finite type over an algebraically closed field K.
Let us review some basic ideas in modern algebraic geometry:

1. studying morphisms, not objects;

2. studying a scheme X by its functor of points, i.e. by the collection of
morphisms Spec A→ X.

∗s.maggiolo@gmail.com
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1. Introduction

1.1 Fat points

1.1 example. Assume that f : X → Y is a morphism of scheme; then f is
proper if and only if for every commutative diagram

C0 := C \ {p} X

C Y

f

with C a smooth (affine) curve and p ∈ C a closed point, i.e. p : Spec K → C,
we have a unique morphism C → X commuting with the diagram. This is
called the valuative criterion for properness.

1.2 exercise. Check how this criterion relates to other versions of the valuative
criterion.

1.3 corollary. Properness and separatedness do not see the scheme structure. In
other words, f : X → Y is proper if and only if fred : Xred → Yred is proper.

On the other end, the most basic object that has a scheme structure is the
following.

1.4 definition. A fat point is a scheme S such that Sred
∼= Spec K.

A fat point has the simplest topology (it is just a point), therefore is the
simplest object with a nontrivial scheme structure.

1.5 example. Let D := Spec K[ε]/ε2; let X be a scheme and x ∈ X a point. There
is a natural bijection between TxX and the set of morphisms D → X such that

D X

Dred Spec K˜

x

commutes. We can indeed identificate such a morphism with a tangent direc-
tion at x.

1.6 remark. If S is a fat point, than S is affine (so S = Spec A); conversely,
Spec A is a fat point if the following conditions are satisfied (note that this is
far from being a minimal set of conditions):

1. it has to be a local K-algebra (so it has a unique maximal ideal mA);

2. A/mA
∼= K as a K-algebra;

3. mA is nilpotent (i.e., Ared
∼= K); by Nakayama’s Lemma, this implies

that A is finite dimensional over K as a vector space (the point is that
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1.2. Extensions

each quotient mi
A/mi+1

A is finite dimensional and finitely many of them are
nonzero);

4. being a finite dimensional K-algebra, A is Artinian, i.e. the descending
chain condition holds for ideals in A.

1.7 definition. Let Art be the category whose objects are K-algebras satis-
fying the previously stated conditions, and whose morphisms are local K-
algebra homomorphism.

In particular, note that the assumptions we have on the objects imply that
the homomorphisms are local.

To every scheme X, we can associate its functor of points hX : K- alg →
Sets. We define hX(A) := MorK- sch(Spec A, X), and, for any morphism of
K-algebras π : Ã → A, the map of set hX(π) sends f : Spec Ã → X to the
composition Spec A→ Spec Ã→ X.

The question is: how much of X → Y can we know if we restrict hX , hY,
and hX → hY to Art?

1.8 proposition. The morphism F : X → Y is smooth (étale) if and only if for every
commutative diagram

Spec A X

Spec Ã Y

i

with A, Ã ∈ Art, and Ã → A surjective (i.e., i is a closed embedding), there exists
(exists and is unique) a morphism f̃ : Spec Ã→ X commuting with the diagram.

We will prove this proposition later; one usually refers to it as the fact that
smoothness (étaleness) is equivalent to formal smoothness (étaleness).

The aim of these lectures is to study this kind of questions, but moreover
we will apply these methods to other context, namely the infinitesimal study
of morphisms of moduli spaces and moduli stacks.

1.2 Extensions

1.9 definition. Let π : Ã → A be a surjective morphism in Art; if we define
I := ker π, we have an exact sequence

(1) 0→ I → Ã π−→ A→ 0.

We say that (1), or π, is a square zero extension of A by I if I2 = 0.

1.10 remark. If π : Ã → A is a square zero extension, then I is naturally
an A-module. The real reason to define these particular kind of extensions is
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1. Introduction

that one can work out deformation theory working only with these. This has
actually been done in the original paper by Illusie.

1.11 definition. An extension (1) or a surjection π : Ã→ A is called semismall
if I ·mÃ = 0, i.e. if I, as an Ã-module, is just a K-vector space.

Note that I ·mÃ = 0 actually implies I2 = 0.

1.12 definition. A semismall extension is called small if dimK I = 1.

1.13 example. Let

π : K[t]�tN+1 � K[t]�tM+1,

with N > M. Then π is square zero if and only if tM+1 · tM+1 = 0, i.e. if
2M + 2 ≥ N + 1; it is small if and only if it is semismall if and only if N =
M + 1.

1.14 remark. For every N > M, π factors as a composition of small exten-
sions:

K[t]�tN+1 � K[t]�tN � · · ·� K[t]�tM+1.

This property is actually more general.

1.15 proposition. Every surjection π : Ã→ A in Art factors as a finite composition
of small extensions.

Proof. Consider the extensions 0 → I → Ã → A → 0, and the vector sub-
spaces Ir := {a ∈ I | a ·mr

A = 0}. We have mA · Ir ⊆ Ir−1 ⊆ Ir, and we have an
N such that mN

A = 0. So we can consider

Ã = Ã�I0
� Ã�I1

� Ã�I2
� · · ·� Ã�IN

= A.

It is easy to check that each step is a semismall extension. To go from semis-
mall extensions to small one, we use the following exercise.

1.16 exercise. If Ã→ A is a semismall extension, then all vector subspaces of
I are ideals in Ã.

1.17 corollary. Let F → G be a natural transformation of functors from Art to
Sets. The following are equivalent:

1. for every Ã→ A, the map F(Ã)→ F(A)×G(A) G(Ã) is surjective (bijective);

2. 1 holds for every square zero extension;

3. 1 holds for every semismall extension;

4. 1 holds for every small extension;
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Before proving the corollary, let us explain the statement with an example.
Let ϕ : X → Y be a morphism of schemes, F := hX and G := hY; then the map
in 1 becomes

{ f̃ : Spec Ã→ X} →


(

f : Spec A→ X
g̃ : Spec Ã→ Y

)∣∣∣∣∣∣∣∣∣∣
Spec A X

Spec Ã Y

f

i ϕ

g̃

 ;

saying that f̃ 7→ ( f , g̃) means that f = f̃ ◦ i an g̃ = ϕ ◦ f̃ , i.e. that f̃ commutes
with the diagram. Asking that the map is surjective (bijective) means asking
that a lifting exists (exists and is unique).

Proof. We need to prove that if we know 1 for small extensions, than we know
it for any extension. We prove this by induction on the dimension d of I as
a K-vector space. If d = 1, Ã � A is small, so there is nothing to prove. If
we know 1 for any extension with dimension of the kernel less than d, and

Ã � A has dimK I = d, than we can find a factorization Ã � A1
small−−−→ A.

Having this, consider ( f , g̃) ∈ F(A)×G(A) G(Ã); let g1 ∈ G(A1) be the im-
age of g̃; by smallness, there exists (exists and is unique) f1 ∈ F(A1) mapping
to ( f , g1). Consider ( f1, g̃) ∈ F(A1) ×G(A1)

G(Ã); by induction there exists
(exists and is unique) f̃ mapping to (F1, g̃).

1.18 exercise. Do the proof of the corollary in the geometric setup.

2 Deformations of morphisms

Lecture 2 (1 hour)
August 31st, 20102.1 Liftings

Let π : Ã � A be a surjective homomorphism of rings with I := ker π square
zero; let also ψ : R → A be any ring homomorphism and ψ̃0 a lifting of ψ, in
the sense that we have the following diagram:

R

Ã

A.

ψ̃0
π

ψ

2.1 lemma. In this situation, there is a natural action of Der(R, I) on the set of
liftings ψ̃ : R → Ã that is simply transitive (in other words, it makes the set into a
torsor under Der(R, I)).

Proof. Since we assume there is a specific lifting ψ̃0, we know that the set is
nonempty. Let ψ̃ : R→ Ã be any map (of sets) and define λ := ψ̃− ψ̃0. To say
that ψ̃ is a lifting of ψ is equivalent to say that:
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2. Deformations of morphisms

1. ψ̃ is a group homomorphism;

2. π ◦ ψ̃ = ψ;

3. ψ̃(xy) = ψ̃(x)ψ̃(y).

We can express these conditions in terms of λ:

1. λ : R→ Ã is a group homomorphism;

2. π ◦ λ = 0, i.e., λ : R→ I ⊆ Ã;

3. since I is square zero, λ(xy) = λ(x)ψ̃0(y) + λ(y)ψ̃0(x), and since λ(x) ∈
I, this is equivalent to λ(xy) = λ(x)ψ(y) + λ(y)ψ(x).

These three properties tells us exactly that ψ̃ is a lifting if and only if λ is a
derivation.

2.2 remark. Use the same assumptions on π, and assume the diagram

S Ã

R A

ϕ

π

ψ

commutes. Then the set of ψ̃ : R → Ã that commutes with the diagrams is
either empty or a torsor under DerS(R, I). Note that we have isomorphisms

DerS(R, I) ∼= HomR(ΩR/S, I) ∼= HomA(ΩR/S ⊗R A, I).

2.3 remark. Assume now A, Ã ∈ Art and π is semismall. Then A has a nat-
ural map to K that induces a K-valued point on Spec R, and the diagram
becomes:

S Ã

R A

K.K

ϕ

ψ

π

In this case, the set of liftings, when it is nonempty, is a torsor under

HomA(ΩR/S ⊗R A, I) ∼= HomK(ΩR/S ⊗R K, I).

If X := Spec R, Y := Spec S, and x ∈ X is the specified K-valued point, then
the group is

Hom(T?
X/Y(x), I) = TX/Y(x)⊗ I.
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2.2. Existence of a lifting

In order to justify the first part of this remark, a square zero extension
would have been enough. We asked for a semismall extension because when
we restrict to these, the result ends up not depending on the specific extension,
but only on the morphism X → Y and on the point x.

2.4 remark. These reasoning works in greater generality. For example, let
T ↪→ T̃ be a closed embedding of schemes with I2

T/T̃
= 0. Let

T X

T̃ Y

f

g

be a commutative diagram of schemes; then the set of morphisms f̃ : T̃ → X
commuting with the diagram is either empty or a torsor under Hom( f ?ΩX/Y, IT/T̃).

2.2 Existence of a lifting

Let p : X → Y be a morphism of affine schemes, and Ã � A a semismall
extension in Art with kernel I. Assume given a commutative diagram

Spec A X

Spec Ã Y

f

g

Then we know that the set of arrows f̃ : Spec Ã → X commuting with the
diagram is empty or a torsor; how do we know which one of the two it is?

Assume that X := Spec R and Y := Spec S; then if P := S[x1, . . . , xn], we
have R = P/J; moreover An

Y = An ×Y = Spec P. Then a lifting h as in

Spec A X

An
Y

Spec Ã Y

f

h

g

always exists: we just have to look at the diagram of rings

A P/J

P

Ã S

α

ψ

ϕ
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2. Deformations of morphisms

and work out explicitly the map α. Observe that, when restricted to J, such
a homomorphism α takes values in I. This is so because J ⊆ ker π ◦ α, so
α(J) ⊆ ker π = I. Also, even if h does not need to factor through X, we can
see that if it does, it factors in a unique way. In the following fix a specific
lifting α0.

Consider the set of all liftings {α}. In it, the set of all liftings to X injects
(it consists of the α with α|J = 0). Moreover, from what we said, {α} has the
structure of a torsor under Hom(ΩP/S, I) ∼= DerS(P, I).

Consider the sequence

Hom(ΩP/S, I)→ Hom(J, I)→ coker→ 0

where the first homomorphism send a derivation ϕ : P → I to its restriction
to J; then a lifting to X exists if and only if ϕ|J + α0|J = 0 for some ϕ, that is,
if and only if α0|J is sent to 0 in the cokernel.

We have to understand what this cokernel is. First of all, note that since π
is semismall, J2 maps to zero in I and so Hom(J, I) = Hom(J/J2, I). Also, we
can manipulate algebraically the sequence to obtain

(2) HomA(ΩP/S ⊗P A, I)→ HomA(J/J2 ⊗P A, I)→ coker→ 0.

Then we proceed with a special case, namely we assume that X → Y is
smooth. In this case, we have the exact sequence

0→ J�J2 → ΩAn
Y/Y|X → ΩX/Y → 0.

Pulling back via f and applying Hom(•, I), it becomes

Hom( f ?ΩAn
Y/Y|X , I)→ Hom( f ? J/J2, I)→ Ext1

Spec A( f ?ΩX/Y, I).

This correspond precisely to the sequence (2); moreover, in this case the Ext
group (hence the cokernel of the sequence (2)) is zero, because ΩX/Y is locally
free. We have obtained the following.

2.5 corollary. If p : X → Y is a smooth morphism of affine schemes, the lifting
always exists for any square zero extension (not necessarily in Art). Moreover, if the
square zero extension is in Art, we need not to assume that X and Y are affine.

Consider now R := P/J and X := Spec R. Fix x ∈ X a point, that is, fix a
maximal ideal mx ⊆ R. Infact, we may assume mx = ((x1, . . . , xn),my), with
my ⊆ S. All that counts now is the morphism Ŝ→ R̂ of the formal completions
at mx and my respectively. Note that R̂ = Ŝ[[x1, . . . , xn ]]/Ĵ. We can simplify this:
for every f ∈ Ĵ, we can split f as f0 + f1 + · · ·; since f is in the maximal ideal
mx, f0 ∈ my. Also, f1 = ∑i aixi, and every time f0 = 0 and there is an ai
which is a unit, we can use f1 to get rid of a variable. This is the formal series
counterpart of the fact that whenever the first derivative of a function does
not vanish, we can solve for a variable.

Using this procedure, and assuming to work locally in the étale topology,
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2.3. Tangent and obstruction spaces

we can assume R = S[x1, . . . , xn ]/J and that the derivatives of the elements in J
are all zero. So the map J → ΩAn

Y/Y is the zero map and the obstruction space
is (J/mJ)∨ ⊗ I.

Summing up: if p : X → Y is a morphism of schemes and x ∈ X is a point
with p(x) = y, and we consider p : hX,x → hY,y the natural transformation of
functors Art → Sets, then for every semismall extension 0 → I → Ã → A →
0, and for every (ϕ, ψ̃) ∈ hX,x(A)×hY,y(A) hY,y(Ã) there is an obstruction to lift

(ϕ, ψ̃) to hX,x(Ã) which is an element of (J/mJ)∨ ⊗ I. If the obstruction space
vanishes, the set of liftings is a torsor under TX/Y(x)⊗ I. In other words, there
is an exact sequence of groups and sets

0→ TX/Y(x)⊗K I → hX,x(Ã)→ hX,x(A)×hY,y(A) hY,y(Ã)→ (J/mJ)∨ ⊗ I.

2.6 definition. We say that the sequence of groups and sets is exact if and
only if:

1. the action of the group TX/Y(x) ⊗ I is free on hX,x(Ã);

2. two points of hX,x(Ã) have the same image if and only if they are in the
same orbit;

3. an element of hX,x(A)×hY,y(A) hY,y(Ã) goes to zero if and only if it has
a lifting.

2.3 Tangent and obstruction spaces

2.7 definition. Let F → G be a natural transformation of functors Art →
Sets. We say that two vector spaces T1 and T2 are tangent and obstruction spaces
for F → G if for every semismall extension 0 → I → Ã → A → 0, there is an
exact sequence of groups and sets

0→ T1 ⊗ I → F(Ã)→ F(A)×G(A) G(Ã)→ T2 ⊗ I

which is functorial, that is, for any other semismall extension 0→ I1 → Ã1 →
A1 → 0 with morphisms

0 I Ã A 0

0 I1 Ã1 A1 0,

the diagram

0 T1 ⊗ I F(Ã) F(A)×G(A) G(Ã) T2 ⊗ I

0 T1 ⊗ I1 F(Ã1) F(A1)×G(A1)
G(Ã1) T2 ⊗ I1
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2. Deformations of morphisms

commutes.
Lecture 3 (1 hour)
September 1st, 2010 Note that, even if it is not part of the definition, most of the time we will

assume F(K) = G(K) = {pt}.

2.8 example. Let F := hX,x, G := hY,y, and F → G induced by p : X → Y with
y = p(x). Then the tangent space T1 is TX/Y(x) and T2 is the cokernel we saw
before.

2.9 remark. Let F : Art → Sets be a functor. We can make absolute the pre-
vious relative definition defining tangent and obstruction spaces of F to be
tangent and obstruction spaces for F → pt, where pt is the functor hSpec K.

2.10 remark. Let p : F → G be a natural transformation and assume G(K) =
{pt}. Let A ∈ Art, then we have a sequence K → A → K and applying G we
get G(K)→ G(A)→ G(K). Let F0 be the fiber of p, so that

F0(A) = {a ∈ F(A) | p(a) = pt ∈ G(A)}.

One can prove that F0 : Art → Sets is a functor and T1 and T2 for p are T1

and T2 also for F0.

We have not specified if tangent and obstruction space are unique.
The second is trivially not unique, since the only property we want for

T2 is that an object maps to 0 if and only if it has a lifting; so for any inclu-
sion T2 ⊆ V2, V2 is also an obstruction space. Therefore, the best hope for
having a unique T2 is to define a minimal obstruction space T2

min such that
for every other obstruction space T2, we have a unique compatible morphism
T2

min ↪→ T2. This is very reasonable theoretically, but in practice finding this
minimal obstruction space is very difficult and doable only when it is given
as a cokernel as in the example.

As for the tangent space, we note that T1, as a vector space, is determined
by F → G; indeed is determined by F0, because we have the exact sequence

0→ T1 ⊗ I → F0(Ã)→ F0(A)→ T2 ⊗ I,

and the only point in F(K) maps to a liftable element in F0(A) for all A.
Hence we can prove that, as a set, T1 = F0(K[ε]/ε2). Let D := K[ε]/ε2; then the
multiplication by λ ∈ K is induced by the morphism D → D sending ε to λε.
For the addition, we have to consider D2 := K[ε1, ε2]/(ε2

1, ε1ε2, ε2
2) and prove that

the map F0(D2)→ F0(D)× F0(D) induced by the two maps D2 → D sending
(ε1, ε2) respectively to (ε, 0) and (0, ε) is a bijection; so we have

F0(D2) F0(D)× F0(D)

F0(D)

where the vertical arrow is induced by (ε1, ε2) 7→ (ε, ε) and the diagonal is the
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2.3. Tangent and obstruction spaces

addition we wanted.

This construction applies also to the case F0 = hX,x, where TxX is the set
of morphisms Spec D → X sending the closed point to x, equipped with the
multiplication and addition we defined.

2.11 example. Let C, B, X be schemes, G := hB,0, and assume we have the
morphisms

C X C0 X0

B {0}

f0

smoothflat

Define

F(A) := {(ϕ, f ) | ϕ ∈ hB,0(A), f : CA → XA, f |C0 = f0}

where CA = C ×B Spec A, XA = X ×B Spec A and f is defined over Spec A.
Let p : F → G be the forgetful transformation sending (ϕ, f ) to ϕ. If C and
X are affine over B, then CA and XA are affine; in this case, T2 = 0 and
T1 = Γ(C0, f ?TX0). In the general case, we cover X by affines Vj and C by
affines Uj so that f0(Uj ∩ C0) ⊆ Vj ∩ X0. The important thing to notice is
that CA has the same topology as C, so CA ∩ Uj, XA ∩ Vj are also affines,
and similarly for Ã. Let 0 → I → Ã → A → 0 be a semismall extension and
consider an element of (ϕ, f , ϕ̃) ∈ F(A)×G(A) G(Ã). This induces the diagram

C0 X0

CA XA

CÃ XÃ

Spec Ã Spec Ã

f0

f

and we ask for the existence of a morphism f̃ : CÃ → XÃ fitting in the dia-
gram. Cover CÃ with CÃ ∩Uj; then by the previous case we can find f̃ j extend-
ing f |CA∩Uj . Do these local data glue? On CÃ ∩Ui,j, f̃i and f̃ j have the same
restriction to CA ∩Ui,j, so they differ by ϑi,j ∈ Γ(Ui,j, f ?0 TX0)⊗ I; it is easy to
see that these defines a 1-cocycle with values in f ?0 TX0 ⊗ I. But we did a choice
selecting the f̃ j; changing this data, one sees that the the cocycle changes by a
coboundary, so that Ti = Hi−1(X0, f ?TX0) for i ∈ {1, 2}. Note that the flatness
is used to know that the kernel of OCÃ

→ OCA → 0 is F⊗K OC0 .
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3. Deformations of a scheme

We did not assume anything about B; indeed, the same argument apply
when B is an algebraic stack. In particular if we fix a dimension d and integers
n, g ≥ 0, we can take B := Mg,n × Vard, where Mg,n is the moduli stack of
nodal, connected, arithmetic genus g curve, with n distinct smooth marked
points, and Vard is the stack of smooth projective varieties of dimension d.
The fact that deformation works over the former is the key to define Gromov-
Witten invariants, while the one that it works over the latter is the key point
to show that they are deformation invariants.

2.12 example. The obstruction space obtained using cohomology is not al-
ways minimal. Indeed, consider a smooth surface X0, C0 := P1, and a closed
embedding f0 : C0 → X0 that is the inclusion of a (−2)-curve, so that NC0/X0

=
OP1(−2). We have the exact sequence

0→ TC0 → TX0 |C0 → NC0/X0
→ 0

and this yelds isomorphisms

K3 ∼= H0(C0, TC0)→ H0(C0, f ?0 TX0) = T1, and

T2 = H1( f ?0 TX0)→ H1(P1,OP1(−2)) ∼= K.

Let B := Spec K; we can define a map Aut(P1) → Mor(C0, X0) sending g to
f0 ◦ g; this is clearly injective and, since the source is smooth of dimension
3 and the target has tangent space of dimension 3, it has to be an isomor-
phism with a connected component of Mor(C0, X0). In particular, Mor(C0, X0)
is smooth at f0.

There often exists a deformation

X0 X

0 B

smooth, projective

such that for b ∈ B general, the fiber Xb contains no (−2)-curve.
A similar case is then V0 is a vector bundle over X0, G = hB,0 and we define

F(A) to be the set of pairs (ϕ, VA) with VA a vector bundle over X ×B Spec A
extending V0 and ϕ ∈ hB,0. In this case, Ti = Hi(X0, End V0) for i ∈ {1, 2}.

3 Deformations of a scheme

Lecture 4 (1 hour)
September 2nd, 2010

3.1 Definition

We could define a deformation of a scheme X0 over Spec A as a flat map
XA → Spec A such that XA ×Spec A Spec K ∼= X0. This has some problems,
indeed the usual definition definition is slightly different: a deformation of
X0 over Spec A is a flat map XA → Spec A together with an isomorphism
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3.2. Extending a deformation

X0
∼−→ XA ×Spec A Spec K, or equivalently a cartesian diagram

X0 XA

Spec K Spec A

3.1 lemma. If X0 = Spec R is smooth and XA is a deformation of X0 over Spec A,
then XA is trivial, i.e.

X0 XA X0 × Spec A

Spec A.

˜natural inclusion

The proof of this lemma can be found in Artin’s “Lectures on deformations
of singularities” (1974).

3.2 Extending a deformation

Let 0→ I → Ã→ A→ 0 be a semismall extension. The aim is to understand
when we have a double cartesian square

X0 XA XÃ

0 Spec A Spec Ã

i.e., when we can extend the deformation over Spec A to a deformation over
Ã and how different deformations are related.

Consider a open and affine cover {Ui} of X0; there is an induced cover
of XA, namely {Ui ∩ XA}. By Lemma 3.1, for every i there exists an iso-
morphism ϕi : XA ∩Ui

∼−→ Ui × Spec A, inducing the identity on the reduced
structure. On double intersections, there are two isomorphisms Ui,j ∩ XA →
Ui,j × Spec A, so we can define automorphisms

ϕi,j = ϕj ◦ ϕ−1
i : Ui,j × Spec A→ Ui,j × Spec A.

One can check that on triple intersection, the ϕi,j satisfy the cocycle condition,
i.e. ϕi,k = ϕj,k ◦ ϕi,k. We can then reconstruct completely XA from the data of
the ϕi,j.

Now, if we assume to have a compatible deformation XÃ over Ã, by Lemma 3.1
we can extend ϕi to ϕ̃i : Ui ∩ XÃ → Ui × Spec Ã. We can also extend ϕi,j, in
such a way that the cocycle condition holds. The converse is also true: if we
can extend the ϕi,j to some ϕ̃i,j ∈ Aut(Ui,j × Spec Ã/Ã) that satisfy the cocycle
condition, then we can define XÃ by glueing.

13



3. Deformations of a scheme

To prove this claim, consider the diagram

Ui,j × Spec A Ui,j

Ui,j × Spec Ã,

ϕi,j

ϕ̃i,j

where the ϕ̃i,j exist because the source is affine and the target is smooth. Then
we can choose ϕ̃i,j in a random way, and we have to check that the cocycle
condition holds on Ui,j,k × Spec Ã. The three maps ϕ̃i,k, ϕ̃j,k, and ϕ̃i,k agree on
Ui,j,k × Spec A, hence they differ by ϑi,j,k ∈ Γ(Ui,j,k, TX0 ⊗ I). It is easy to check
that these elements defines a Čech 2-cocycle on the cover {Ui,j,k} with values
in TX0 ⊗ I. When we make a different choice of ϕ̃i,j, the cocycle ϑi,j,k changes
by a coboundary.

We obtain that XÃ exists if and only if [ϑ] ∈ H2(X0, TX0)⊗ I is zero. More-
over, if [ϑ] = 0 for a choice ϕ̃i,j, then any other choice differ by a 1-cocycle
(and gives the same deformation if they differ by a 1-coboundary), so the set
of all possible choice (if nonempty) is a torsor under H1(X0, TX0)⊗ I. Indeed,
we have the following.

3.2 lemma. Assume 0→ I → Ã→ A→ 0 is a semismall extension and

X0 XA

Spec K Spec A

i

π (flat)

is a cartesian diagram. Then, if there exists a cartesian diagram

XA XÃ

Spec A Spec Ã,

j

π̃

the set of triples (XÃ, π̃, j) as before, modulo isomorphisms, is a torsor under H1(X, TX0)⊗
I. Here an isomorphism (XÃ, π̃, j) → (X′

Ã
, π̃′, j′) is an isomorphism ψ : XÃ → X′

Ã
commuting with the maps j, j′, π̃, π̃′.

14
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3.3 Deformation functor of a scheme

Consider the functor DefX0 : Art → Sets defined by letting DefX0(A) be the
set of triples (XA, π, i) with a cartesian diagram

X0 XA

Spec K Spec A

i

π (flat)

modulo isomorphisms. Then for every semismall exact sequence 0 → I →
Ã→ A→ 0, there is an exact sequence of groups and sets

H1(X0, TX0)⊗ I → DefX0(Ã)→ DefX0(A)→ H2(X0, TX0)⊗ I.

The reason why there is no 0 on the left is the following. If ξ̃ := (XÃ, π̃, j) ∈
DefX0(Ã), then the stabilizer of ξ̃ inside H1(X0, TX0) ⊗ I gives an exact se-
quence

0→ H0(X, TX0)⊗ I → Aut(ξ̃)→ Aut(ξ)→ Stab(ξ̃)→ 0,

where ξ is the image of χ̃ in DefX0(A).

3.4 Groupoids, stacks and 2-functors

The problem here is that we modded out isomorphisms in the definition of
DefX0 ; the idea of Artin instead is to remember isomorphisms (and in par-
ticular automorphisms), in this way: define DefX0(A) to be the set of triples
(XA, π, i) together with the set of isomorphisms between them. This object is
no more a set, but a groupoid.

3.3 definition. A groupoid is a category such that all morphisms are isomor-
phisms.

Hence the new DefX0 is a pseudofunctor Art → Groupoids. Here we said
pseudofunctor because Groupoids has a natural structure of 2-category.

3.4 example. The easiest example of a groupoid is a category where we can-
celed all non invertible morphisms.

Recall that we are always working over an algebraically closed field K.
Consider Vsp, the category of K-vector spaces; we can define two functors
between Vsp and itself, the identity and the double dual functor. There ex-
ists a natural transformation between them that is a natural equivalence when
restricted to finite dimensional vector spaces. Usually, one draws such a situ-
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3. Deformations of a scheme

ation with this kind of diagrams:

Vsp Vsp.

id

DD

=⇒

In these diagrams, one has not only vertices and arrows (objects and mor-
phisms), but also faces (natural transformations).

So, when we have a natural structure F : Art → Sets, we have two vector
spaces T1

F and T2
F (tangent and obstructions); when the natural structure for

our deformation functor is F : Art→ Groupoids, we obtain three vector spaces:
in addition to the previous one we have T0

F that represent the tangent space
to the automorphisms group of the (only) point F(K). This development was
in some sense hinted by deformation theory itself, whose result showed that
there was still to give an interpretation to the cohomology group H0(X, TX0).

This intuition took Artin to define his version of algebraic stacks; already
Deligne and Mumford defined algebraic stacks starting from functors to the
2-category of groupoids, but their version is too soft: the way one recognize
DM-stacks amongst Artin stacks is precisely to look at them infinitesimally
and see that the tangent space to the automorphisms group is 0.

In the case of the deformations of a scheme X0, the tangent space Tid Aut(X0)
is (by what we said in the previous lectures) H0(X0, id? TX0), that is H0(X0, TX0).

If H0(X0, TX0) = 0, we can prove by induction on dimK A that Aut(ξ) = 0
for every ξ. Moreover, in many occasion where Aut(ξ̃) does not change too
wildly, one still has Stab(ξ̃) = 0.

3.5 Cotangent complex

One modern viewpoint is that for every morphism of schemes f : X → Y,
there is a simplicial (in characteristic 0, dg) resolution ε : X ↪→ X̃ in an ap-
propriate derived category, such that ε is a quasi-isomorphism and induces a
unique (up to quasi isomorphisms) quasi smooth f̃ : X̃ → Y. This leads to this
program to solve a problem:

• solve the problem in the smooth case;

• express the solution in terms of the cotangent bundle;

• replace the cotangent bundle ΩX/Y with the cotangent complex ε?ΩX̃/Y =

L•X/Y
∈ D≤0

coh(X); this has the following properties:

1. τ≥−1L•X/Y
= [I/I2 → ΩW|X ] for W a variety that has a closed embed-

ding X ↪→W and a smooth morphism W → Y;

2. L•X/Y
= τ≥−1L•X/Y

if X → Y is lci;

3. it is functorial.
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3.5 exercise. Let Y := Spec K, X a nodal curve (since everything is étale local,
we can think of X := Spec K[x, y]/xy); the variety W can be taken to be A2.
Compute L•X/Y

= ΩX/Y and prove

Ext2(ΩX/Y,OX) = 0, and

Ext1(ΩX/Y,OX) = Op,

where p is the node. This is the key point to deduce the deformation theory
of nodal curves.
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