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1 Introduction

Lecture 1 (1 hour)
August 31st, 2010Classical deformation theory studies functors defined on Artinian rings. Op-

posed to this, derived deformation theory studies functors on simplicial rings,
or dg-rings.

A simplicial rings looks like

A0 A1 A2 · · ·

∗s.maggiolo@gmail.com

1

mailto:s.maggiolo@gmail.com


2. Motivation

Over Q, they are equivalent to dg-algebras (on non-negative chain de-
grees).

1.1 definition. A dg-algebra A is a chain complex

· · · → A1 → A0 → · · ·

together with a multiplication Ai × Aj → Ai+j such that ab = (−1)deg a deg bba,

d(ab) = da · b + (−1)deg aa · db, 1 ∈ A0.

As a convention, we will write dg-algebra when we mean a chain complex,
and DG-algebra when we mean a cochain complex.

Let dgAlg be the category of dg-algebras and dg+Alg che category of dg-
algebras with non-negative degrees.

1.2 definition. A local dg-algebra A is an Artinian dg-algebra such that:

1. dim A < ∞;

2. m(A)n = 0 for n high enough, where m(A) := ker(A → k) (remember
that A = k⊕m(A)).

We will write dgArt and dg+Art for the categories of all local dg-Artinian
rings and with non-negative degrees.

2 Motivation

2.1 Intersection theory

Consider {0} ∈ A1 and X := {0} ×h
A1 {0}, where ×h is the homotopic fiber

product; let X = Spec(k⊗L
k[t] k), where ⊗L is the derived tensor product. Now,

k ∼= (k[t] · s d−→ k[t]) =: A

(here ds = t and k[t] is in level 0). Then again X = Spec(A⊗k[t] k) = Spec(k⊕
k[−1]).

The multiplicity is the Euler characteristic, that is χ(X) = 1− 1 = 0. Let
x := {0}; then TxX = k[−1] and dim X = χ(k[−1]) = −1.

2.2 Cotangent complex

Let B → R be a non-smooth morphism of rings; take a quasi free resolution
R̃• → R over B, that means that R̃• is free as a graded B-algebra and R̃• → R
is a quasi isomorphism (i.e., an isomorphism on H?).

2.1 definition. The cotangent complex is defined as

L
R/B
• := Ω(R̃•/B)⊗R̃•

R.
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2.3. Obstruction theory

Note that if J = ker(R̃• ⊗B R→ R), then L
R/B
• = J/J2.

Let us review some properties of the cotangent complex. If we have a
square zero extension A → B with kernel I, then the obstruction to lifting
the flat morphism B → R to a flat morphism A → R with R ⊗A B ∼= R is
Ext2

R(L
R/B
• , R⊗B I). This is in turn the second cohomology of the complex

HomR(L0, R⊗B I)→ HomR(L1, R⊗B I)→ · · · .

If R does lift, the set of isomorphism classes of lifts is isomorphic to
Ext1

R(L
R/B
• , R⊗B I). We can choose R̃• canonically, so the construction sheafify.

2.2 example. Let X ↪→ Y be a regular embedding over S with ideal I; assume
that Y is smooth. Then L

X/S
• is isomorphic to (j?ΩY/S ← I/I2) (here the degree

are 0 and 1). Moreover, Ext?X(L
X/S
• ,OX ⊗ I) governs global deformations.

2.3 Obstruction theory

Take a nice functor F : Art → Sets; consider a semismall extension A → B
with kernel I, and let x ∈ F(B). What is the obstruction to lifting x to F(A)?

Assume that F extends to a functor from dgArt.

2.3 definition. We say that F : dgArt→ Sets is a deformation functor if:

1. for every A � B semismall with kernel I (i.e., with I ·m(A) = 0), and
for every C → B, we have that

F(A×B C)→ F(A)×F(B) F(C)

is surjective;

2. for every A, B ∈ dgArt, F(A×k B)→ F(A)× F(B) is an isomorphism;

3. F(k) = {pt};

4. if f : A � B is an acyclic semismall extension (i.e., H?(ker f ) = 0), then
F(A)→ F(B) is an isomorphism.

Fix now a semismall extension A � B with kernel I, in the category Art.

2.4 definition. Consider εn on level n, with ε2
n = 0; define Hn F := F(k[εn]);

these are k-vector spaces.

Let B̃ be a dg-algebra, with A at level 0 and I at level 1; the morphism
I ↪→ A is the kernel morphism. Then we have a obvious morphism of dg-
algebras B̃→ B, whose kernel is I → I.

So B̃→ B is an acyclic semismall extension in dgArt; by the fourth property,
F(B̃) ∼= F(B), so there is an x̃ ∈ F(B̃) associated to x ∈ F(B).
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2. Motivation

Now, B̃ � k⊕ I[−1], so we have a dg-morphism

I I

A k

0

Observe that A = B̃×(k⊕I[−1]) k. By the first property, F(A) � F(B̃)×F(k⊕I[−1])

F(k). Now, F(k) is a point, and F(k⊕ I[−1]) = (H1 F)⊗ I. So

F(A) � F(B)×H1 F⊗I {0}

is a surjection and x ∈ F(B) lifts to F(A) if and only if the map F(B) →
H1 F⊗ I sends x to 0; hence H1(F) is the obstruction theory.

In the following we will give same examples of situations where these
functors arise.

2.4 DGLA

2.5 definition. A differential graded Lie algebra, or DGLA, is a cochain complex
equipped with a bracket operator [, ] : Li × Lj → Li+j, satisfying:

1. [b, a] = −(−1)deg a deg b[a, b];

2. [[a, b], c] = [a, [b, c]]− (−1)deg a deg b[b, [a, c]];

3. d[a, b] = [da, b] + (−1)deg a[a, db].

2.6 example. The typical example of a DGLA is when I is a Lie algebra, A• is
the de Rham complex; then A• ⊗ I is a DGLA.

2.7 definition. We define the Maurer-Cartan functor MC(L) : dgArt→ Sets as
the functor that sends A ∈ dgArt to the set{

w ∈∏
n

Ln+1 ⊗m(A)n

∣∣∣∣ dω + 1/2[ω, ω] = 0
}

.

2.8 definition. The gauge group Gg(L) : Art→ Groups is defined by

Gg(L, A) := exp
(
∏

n
Ln ⊗m(A)n

)
.

The gauge group acts on MC(L, A) by (g, ω) 7→ gωg−1 − dg · g−1.

2.9 definition. We define

Def(L, A) := MC(L, A)�Gg(L, A).

This can be proven to be a deformation functor.
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2.4. DGLA

2.10 example. Take a dg-resolution R̃• → R over the base B, and let Ln :=
DerB(R̃•, R̃•)n, i.e. the derivations of the form R̃• → R̃•[−n] over B, consid-
ered as a graded ring. We have [ f , g] = f ◦ g∓ g ◦ f and d f = d ◦ f ∓ f ◦ d.

In this situation, MC(L, A) is the set of deformations δ of d on R̃•⊗ A such
that δ2 = 0, and δ(rs) = δr ◦ s± r ◦ δs. This is equivalent to say that (R̃•⊗ A, δ),
where δ = d + ω, is a dg-algebra over A. Also, the gauge group Gg(L, A) is
the set of infinitesimal automorphisms of R̃• ⊗ A as a graded algebra. Finally,
Def(L, A) is the set of isomorphism classes of R̃• ⊗ A.

If A ∈ Art, this maps to the set of deformations of R̃• ⊗ A by

(R̃• ⊗ A, δ) 7→ H0(R̃• ⊗ A, δ)

(the target is the set of deformations of R). Also, H1 L = Ext1
R(L

R/B
• , R) and

Hi(Def L) = Hi+1 L. This last assertion is true in general.
Lecture 2 (1 hour)
September 1st, 2010

2.11 example. Let X be a scheme over k, and F be an OX-module. Consider
an injective resolution I• of F , and define L• := END•OX

(I•), so that we have
Ln = HomOX (I

•, I•[n]). Define also

[ f , g] := f ◦ g− (−1)deg f deg gg ◦ f , and

d f = d ◦ f − (−1)deg f f ◦ d.

Let A ∈ Artk, ω ∈ MC(L, A); then

d + ω : In ⊗ A→ In+1 ⊗ A→ · · ·

and the deformations of F are H0(I• ⊗ A, d + ω). In general, MC(L) deter-
mines Def(L).

2.12 theorem (Manetti). The functor Def(L) : dgArt → Sets is the universal de-
formation functor under MC(L), i.e., for any deformation functor F with a transfor-
mation MC(L)→ F, there exists a unique compatible transformation Def(L)→ F.

We can wonder what other deformation functors are there.

2.13 theorem. If F : dgArt → Sets is a deformation functor, there exists a DGLA
L such that Def(L) ∼= F.

Infact, Def determines a functor from DGLAs to deformation functors that
induces an equivalence between H0(DGla), the homotopy category obtained
by formally inverting quasi isomorphisms, and deformation functors.

2.14 problem. The functor Def(L) is not left exact (i.e., does not preserve
fiber products). In particular, it cannot sheafify, so it does not admit a global
version.

The solution to this problem, given by Hinich, is to look at functors to
simplicial sets.
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2. Motivation

2.15 definition. The topological n-simplex |∆n| ⊆ Rn+1 is given by the set
of tuples (x0, . . . , xn) with ∑ xi = 1. There are maps ∂i :

∣∣∆n−1
∣∣ → |∆n| for

0 ≤ i ≤ n called the i-th face and maps σi :
∣∣∆n+1

∣∣ → |∆n| collapsing the edge
between vi and vi+1 called collapsing maps.

2.16 definition. Given X ∈ Top, define Sing(X) to be the diagram

Sing(X)0 Sing(X)1 Sing(X)2 · · ·σ0

∂0

∂1 σ0

σ1

∂0

∂1

∂2

where Sing(X)n = Hom(|∆n| , X). Any diagram like this is called a simplicial
set. Denote the category of these by $.

The functor Sing : Top → $ has a left adjoint K 7→ |K|, that is, we have
isomorphisms

HomTop(|K| , X) ∼= Hom$(K, Sing(X)).

2.17 remark. Dold-Kahn gives an equivalence between simplicial abelian groups
and non-negative chain complexes.

2.18 definition. Given K ∈ $, define π0K := π0 |K|, and for x ∈ π0K,
π1(K, x) := π1(|K| , x).

The canonical maps |Sing(X)| → X and K → Sing(|K|) are weak equiva-
lences, i.e., they give isomorphisms on πn.

2.19 definition. Let xi be at level 0; then we define

Ω•dR(|∆
n|) :=

Q[x1, . . . , xn, d x1, . . . , d xn]

∑ xi = 1, ∑ d xi = 1
.

2.20 definition. Given a DGLA L, define MC(L) : dgArt→ $ by

MC(L, A)n := MC(L⊗Ω•dR(|∆
n|), A).

The idea is that π0 MC(L, A) will be the set of (quasi) isomorphism classes
of objects, and π1(MC(L, A), x) will be the automorphisms group of x, and
πn(MC(L, A), x) will be the higher automorphism groups. In high-brow lan-
guage, $ is a model for ∞-groupoids.

Note that if Hi(L) = 0 for i < 0 and A ∈ Art or A ∈ dgArt, then
πn(MC(L, A), x) = 0 for any i ≥ 2.

These are some properties of MC(L).

1. It takes acyclic semismall extensions to weak equivalences.

2. π0(MC(L)) = Def(L).
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2.4. DGLA

3. If ε2
n = 0 modulo n, then πi(MC(L, k[εn])) = Hn+1−i(L).

4. If Hi(L) = 0 for every i < 0 and A ∈ Art, then MC(L, A) is weakly
equivalent to the nerve of the groupoid [MC(L, A)/Gg(L, A)].

2.21 example. When L = DER(R̃•, R̃•), where R̃• → R is a free resolution,
then MC(L)n is the Simplicial set of deformations of R̃• ⊗Ω•dR(|∆

n|).

2.22 problem. The functor MC(L) : dgArt→ $ does not take all quasi isomor-
phisms to weak equivalences. To solve this problem, we restrict the functor to
dg+Art ⊆ dgArt; MC(L) : dg+Art → $ is called the Hinich’s simplicial nerve of
L.

Our next aim is to understand how to recover L from MC(L) (restricted to
dg+Art).

2.23 definition. Let f : X → Y and g : Z → Y be maps of topological spaces.
We define the homotopy fiber product to be X×h

Y Z := X×Y Y[0,1] ×Y Z.

2.24 remark. Let P := X×h
Y Z; then there is a long exact sequence

πn(P)→ πn(X)× πn(Z)→ πn(Y)→ πn−1(P)→ · · ·

In particular, π0(P) � π0(X)×π0(Y) π0(Z).
If A � B is semismall and C → B, then

MC(L, A×B C) ∼= MC(L, A)×h
MC(L,B) MC(L, C).

2.25 theorem. Let A, B, C be as above and consider the category C of functors
F : dg+Art→ $ such that:

• |F(A×B C)| ∼−→ |F(A)| ×h
|F(B)| |F(C)| is an isomorphism, and

• F takes quasi isomorphism to weak equivalence.

Then the association L 7→ MC(L, A) gives a functor DGla → C, that induces an
equivalence between the homotopy categories H0(DGla) and H0(C). Infact, this is a
∞-equivalence.

The homotopy category is constructed inverting weak equivalences. For
DGLAs this is clear; for C we say that F → G is a weak equivalence if and
only if F(A)→ G(A) is a weak equivalence for every A.

2.26 example. Let V be a vector space, L0 := End(V), Li := 0 for every i 6= 0.
For every A ∈ dg+Art, π0(MC(L, A)) is the set of isomorphism classes of
deformations of V ⊗ A as an A-module (complex). Moreover, π1(MC(L, A))
is the set of homotopy classes of maps V → V ⊗m(A)[n− 1].
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3. Homotopy theory

3 Homotopy theory

3.1 Model categories

3.1 definition. A model category is a category C endowed with three classes of
distinguished morphisms: the class F of fibrations, W of weak equivalences, and
C of cofibrations, subject to the following properties:

1. every map A → B has factorizations as A C−→ X W∩F−−−→ B and A W∩C−−−→
Y F−→ B.

2. Given a commutative diagram

A X

B Y

i p

with i ∈ C and p ∈ F, of i, p ∈ W, then there exists a diagonal arrow
B→ X commuting with the diagram.

We refer to elements of W ∩ F as trivial fibrations, and to elements of W ∩C
as trivial cofibrations.

An object X is fibrant if the morphism from X to the final object is a fibra-
tion. An object A is cofibrant if the morphism from the initial object to A is a
cofibration.

The second property allows us to recover C from W ∩ F and F from W ∩C.
Indeed, consider the following.

3.2 definition. We say that i has the left lifting property with respect to p (or
that p has the right lifting property with respect to i) if in the situation of the
second property, a diagonal arrow exists.

We have that i ∈ C if and only if it has the left lifting property with respect
to all p ∈W ∩ F; conversely, p ∈ F if and only if it has the right lifting property
with respect to all i ∈W ∩ C.

3.3 example. These are examples of model categories (we write ? when a class
is too long to be described):

• the categories of chain complexes of vector spaces, where the cofibra-
tions are injections, fibrations are surjections and weak equivalences are
quasi isomorphisms;

• chain complexes of vector spaces in degree ≥ 0, with injections, surjec-
tions in degree > 0, and quasi isomorphisms;

• $, with injections, Kan fibrations, and weak equivalences;

• Top, with ?, Serre fibrations, and weak equivalences;
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3.2. Path objects

• chain complexes of sheaves in degree ≥ 0, with injections in degree > 0,
surjections with injective kernel, and quasi isomorphisms.

• DGLAs, with ?, surjections and quasi isomorphisms.
Lecture 3 (1 hour)
September 2nd, 2010Recall that given a model category C, we defined the homotopy cate-

gory H0(C) formally inverting weak equivalences. We also write [A, X] for
HomH0(C)(A, X).

Note that not all objects in $ are fibrant, but Sing(X) is, as is any sim-
plicial abelian group. Moreover, for every K ∈ $, K → Sing(|K|) is a fibrant
replacement (that is, is a weak equivalence to a fibrant object).

3.2 Path objects

3.4 definition. A path object for a fibrant object X in a model category C is a
diagram

X PX X

id

with X → PX a weak equivalence, and PX → X× X a fibration.

Since X is assumed to be fibrant, also PX is fibrant. The axioms of the
model category implies the existence of PX, but not its uniqueness.

3.5 example.

1. In Top, PX = X[0,1], the space of maps [0, 1]→ X.

2. In $, PX = X∆1
, where, for any object K ∈ $, (XK)n := Hom(∆n × K, X).

3. For chain complexes, PV is the cylinder of the map V → V ⊕ V (the
underlying graded ring is V ⊕V ⊕V[−1]).

4. For DGLAs, PL = L⊗Ω•dR(
∣∣∆1
∣∣).

3.6 theorem. If A is cofibrant and X is fibrant, then [A, X] = Hom(A, X)/Hom(A, PX).

The dual notion of path objects is the notion of cylinder objects.

3.3 Homotopy function objects

Given X ∈ C fibrant, we say that a simplicial diagram RES(X) in C

X = RES0(X) RES1(X) RES2(X) · · ·

is a fibrant simplicial resolution if:

1. X → RESn(X) is a weak equivalence for every n;

9



3. Homotopy theory

2. RESn(X) → Mn RES(X) is a fibration, where Mn is the n-th Ready
matching object.

The boundary ∂∆n of ∆n is the equalizer of the two maps

∏
0≤i<j≤n

∆n−2 →
n

ä
i=0

∆n−1.

We define Mn RES(X) to be the equalizer of the two maps

n−1

∏
i=0

RESn−1(X)→ ∏
0≤i<j≤n

RESn−2(X).

3.7 definition. Given A, X ∈ C, with X fibrant and A cofibrant, we define the
homotopy function complex as RMap(A, X) ∈ $ by

RMap(A, X)n := Hom(A, RESn(X)).

If X and A are general, we define RMap(A, X) as RMap(A′, X̂), where X̂ is a
fibrant replacement for X and A′ is a cofibrant replacement for A. The result
is independent on the choice of the replacementes.

3.8 theorem (Dwyer-Kan). The construction of RMap depends only on W ⊆ C.

3.9 example.

1. In dg+Vect, RESn(V) = V ⊗ Nk(∆n) is generated by non-degenerate i-
simplexes in ∆n in level i.

2. In $, RESn(X) = X∆n
.

3. For DGLAs, RESn(L) = L⊗Ω•dR(|∆
n|).

Note that RES1(X) is always a path object.

3.4 MC again

The following is called cobar construction. Given A ∈ dgArt, let β?(A) be the
free graded Lie algebra on generators m(A)∨[−1]. The differential is given
by dA + ∆ : m(A)∨ → m(A)∨[−1] ⊕ m(A)∨[−2], where ∆ is the dual of the
multiplication.

These are the main properties of the cobar construction:

1. β?(A) is cofibrant;

2. MC(L, A) = HomDGla(β?(A), L);

3. Def(L, A) = [β?(A), L];

4. MC(L, A) = RMap(β?A, L).

10



3.5. Homotopy fiber products

3.5 Homotopy fiber products

3.10 definition. Given A→ B and C → B with B fibrant, define the homotopy
fiber product A×h

B C as A′×B C′, where A→ A′ is a weak equivalence, A′ → B
is a fibration, and similarly for C′.

If C is right proper (as is every category we have seen), this is equivalent
to A′ ×B C, that is, we don’t need to replace C with C′.

3.11 example. The object A×B PB is a replacement for A, fibrant over B. As
a corollary, A×h

B C ' A×B PB×B C.

3.6 Quillen functors

3.12 definition. Given two adjoint functors F : C → D and G : D → C (that is,
we have Hom(FA, B) ∼= Hom(A, GB)), we say that F is left Quillen or that G is
right Quillen if either:

1. F preserve cofibrations and trivial cofibrations, or

2. G preserve fibrations and trivial fibrations.

3.13 definition. Given a right Quillen functor G : D → C, we define the right
derived functor R G by R G(X) := G(X′), where X → X′ is a fibrant replace-
ment. We define L F for F left Quillen dually.

3.14 example. Let f : X → Y be a map of topological spaces; then we have
functors f? : dg+Sh(X)→ dg+Sh(Y) and f ? the other way round. All objects
are cofibrant, so L f ? = f ?; but R f?(V) is f? I• for V → I• a fibrant replace-
ment, i.e., an injective resolution.

These are some properties of Quillen functors:

1. RMap(L FA, B) ' RMap(A, R GB);

2. L F : H0(C)→ H0(D) and R G : H0(D)→ H0(C) are well defined.

3.15 definition. We say that (F, G) are a Quillen equivalence if L F and R G are
an equivalence between H0(C) and H0(D).

If (F, G) are a Quillen equivalence, RMap(L FA, L FA′) ' RMap(A, A′) and
similarly for R G.

3.16 example.

1. The functor Sing : Top → $ and |•| : $ → Top form a Quillen equiva-
lence.

2. The cotangent complex LR/B can be describes as the left Quillen functor
dg+AlgB ↓R→ dgModR.

11



4. Derived deformation theory

4 Derived deformation theory

4.1 Functor categories

We observe that dgArt is too small to be a model category. The solution is the
following.

4.1 definition. We say that F : C → D is left exact if

F(A×B C) ∼= F(A)×F(B) F(C)

and it preserves the final object. Let lex(C,D) be the category of left exact
functor C → D.

Consider lex(dgArt,Sets); this contains (dgArt)op as a full subcategory. To
prove this, we can associate to an object A ∈ dgArt the functor A 7→ Spec A,
where (Spec A)(B) := Hom(A, B).

4.2 theorem. There is a model structure on lex(dgArt,Sets) with these properties:

1. all objects are cofibrant;

2. F is fibrant (trivially fibrant) if and only if F(A) → F(B) is surjective for all
acyclic semismall extensions (all semismall extensions);

3. a map of fibrant objects F → G is a weak equivalence if and only if the map of
univeral deformation functors F+ → G+ is an isomorphisms.

Note that, with this definition of model structure, MC(L) is fibrant, while
Gg(L) is trivially fibrant.

4.3 lemma. The object MC(L) s−→ MC(L)×Gg(L)
t1,t2−−→ MC(L) is a path object.

Proof. Since Gg(L) is trivially fibrant, s is a weak equivalence. Then MC(L)×
Gg(L) → MC(L) ×MC(L) is a fibration. This says that for every A � B
semismall and acyclic, and for every x, y ∈ MC(L, A) and g ∈ Gg(L, B), such
that g(x) = y ∈ MC(L, B), there exists g̃ ∈ Gg(L, A) over g such that g̃(x) =
y.

4.4 remark. The functors F ∈ lex(dgArt,Sets) are precisely MC(V), where V
is a L∞-algebra.

Lecture 4 (1 hour)
September 3rd, 2010 4.5 theorem. Given a deformation functor F : dgArt→ Sets, there exists a fibrant

G ∈ lex(dgArt,Sets) such that F(A) = [Spec A, G] for every A ∈ dgArt. This
association induces an equivalence between the category of deformation functors and
the homotopy category H0(lex(dgArt,Sets)).

Outline of the proof. The functor F can be extended to inverse systems setting

F({Ai}i∈I) := lim←−
i∈I

F(Ai).
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4.1. Functor categories

By Grothendieck prorepresentability, one proves that objects of lex(dgArt,Sets)
are lim−→i∈I

Spec Ai. Hence, F becomes a functor lex(dgArt,Sets)op → Sets.
Now, we apply Heller’s theorem, that states the existence of G such that

[lim−→i∈I
Spec Ai, G] = F({Ai}i∈I) for every {Ai}i∈I .

4.6 theorem. The functor MC: DGla → lex(dgArt,Sets) is a right Quillen
equivalence.

Proof. Given lim−→i∈I
Spec Ai, we get a DGLA lim−→i∈I

β?(Ai) using the cobar con-
struction. Then

Hom(lim−→
i∈I

(β?(Ai)), L) = lim←−
i∈I

Hom(β?(Ai), L) = lim←−
i∈I

MC(L, Ai).

So β? is a left adjoint to MC; but MC preserves fibrations ant trivial fibra-
tions, hence is right Quillen.

The last part of the proof involves spectral sequences.

Given a DGLA L, let β(A) be the inverse system k[L[1]∨] (note that L[i]
is a pro-finite dimensional vector space). Then, MC(L) = Specf β(L), and the
differential are given on the generators by dL + ∆ : L[i]∨ → L[2]∨ ⊕ ∧2 L[2]∨,
where ∆ is the dual to [•, •].

Consider the space Hom(MC(L), MC(M)); from what we said, this is equal
to Hom(Specf β(L), MC(M)), hence it is

MC(M, β(L)) = HomDGla(β?β(L), M).

Infact, we see that this space is the space of ∞-maps L → M. Therefore,
RMap(L, M) = MC(M, β(L)). Applying Fiorenza-Martinengo, this gives the
Griffiths period map, Bogomolov-Tian-Todorov, the Kodaira embedding prin-
ciple, Goldman-Millson and other theorems.

Right Quillen functors preserve homotopy fiber products of DGLAs; there-
fore, given χ : L→ M, we have

MC(L×h
M {0}) = MC(L)×h

MC(M) {0}.

Also, MC(M)×Gg(M) is a path object for MC(M), so

MC(L×h
M {0}) = (MC(L)×Gg(M))×MC(M) {0}.

Then, Manetti-Fiorenza shows that there is a L∞-algebra Cχ with MC(Cχ) =
(MC(L)×Gg(M))×MC(M) {0}.

In the general framework, this translates to the fact that

L×M (M⊗Ω•dR(∆
1))×M {0}

has the same properties (but with quasi isomorphisms).
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4. Derived deformation theory

4.2 Simplicial functors

Function complexes in lex(dgArt,Sets). Take the pullback A(n)′ of k→ Ω•dR(|∆
n|)

via A⊗Ω•dR(|∆
n|) → Ω•dR(|∆

n|). In general this is not finite dimensional. So
we consider I := ker(A(n)′ → A×K(n+1)) and do the following.

4.7 definition. We define A(n) := {A(n)′/Ir}r, and RESn(F)(A) := lim←− F(A(n)′/Ir).

RESn(F)(A) is a simplicial fibrant resolution. Write F : dgArt → $ for the
functor defined by Fn := RESn(F).

4.8 remark. It is not true that MC(L) = MC(L). However, we have a weak
equivalence MC(L) ↪→ MC(L) defined by

L⊗Ω•dR(|∆
n|)⊗ A→ lim←−

r

(L⊗Ω•dR(|∆
n|)⊗ A)�Ir.

Moreover,

MC(L, A) ' RMap(β?(A), L) ' RMap(Spec A, MC(L)) ' MC(L)(A).

4.9 remark. All objects in DGla are fibrant, so R MC = MC; likewise, all
objects in lex(dgArt,Sets) are cofibrant, so L β? = β?.

4.10 theorem. There is a model structure on lex(dg+Art, $) for which all objects
are cofibrant and F is fibrant if and only if

1. for all semismall extensions A � B, F(A)→ F(B) is a fibration;

2. for all acyclic semismall extensions A � B, F(A)→ F(B) is a trivial fibration.

A transformation η : F → G of fibrant objects is a weak equivalence if and only if
F(A)→ G(A) is a weak equivalence for every object A ∈ dg+Art.

4.11 theorem. Let S be the category of functors F : dg+Art→ $ such that:

1. for every semismall extension A � B, and for every C → B, the map

F(A×B C)→ F(A)×h
F(B) F(C)

is a weak equivalence;

2. F preserves weak equivalences;

3. F(k) is constructible.

Then, the map lex(dg+Art, $) → S, given by sending F to a fibrant replacement, is
an ∞-equivalence. In particular, H0(lex(dg+Art, $)) ' H0($)

4.12 remark. An ∞-equivalence is a transformation that induces an equiv-
alence on the homotopy categories plus a condition on how space of maps
translates under this transformation. More precisely, we have to impose the
condition RMap(X, Y) = Hom(X, Y), where Hom(X, Y)n := Hom(X, Y∆n

).
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4.2. Simplicial functors

4.13 theorem. The functor lex(dgArt,Sets) → lex(dg+Art, $) sending F to the
restriction F|dg+Art is a right Quillen equivalence.

Proof. We look at RMap, after constructing a left adjoint.

So the idea is that lex(dg+Art, $) is the category of simplicial formal dg-
schemes, and corresponds to the category of cosimplicial pro-Artinian dg-
rings. Also, lex(dgArt,Sets) corresponds to pro-Artinian dg-rings. The functor
lex(dg+Art, $)→ lex(dgArt,Sets) is Thom-Whitney.

Summing up, we obtained the following:

DGla lex(sArt, $)

lex(dgArt,Sets) lex(dg+Art, $)

L∞-algebras

F 7→F

β?

N?F
MC

Thom

The functor N : dg+Art → sArt is a right Quillen functor induced by the
Dold-Kan normalization, and induces N? in the diagram.

Given a dg-manifold X, the associated functor dg+Alg → $ is X, given by
X(A)n := Hom(Spec(A⊗Ω•dR(∆

n)), X). This is a 0-truncated geometric stack
(as in Toën-Vezzosi) or a derived 0-stack (as in Lurie).
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