Automorfismi delle superfici di Godeaux con torsione di ordine 4 e 5

Stefano Maggiolo

Università di Pisa

27 giugno 2008

Scopo (I)

Calcolare il gruppo di automorfismi di una superficie di Godeaux.

Scopo (II)

Classificazione delle superfici di Godeaux:

 $egin{array}{c} \mathbb{Z}_5 \ \mathbb{Z}_4 \ \mathbb{Z}_3 \end{array} igg|$

costruzione esplicita

Scopo (II)

Classificazione delle superfici di Godeaux:

$$\begin{bmatrix} \mathbb{Z}_5 \\ \mathbb{Z}_4 \\ \mathbb{Z}_3 \end{bmatrix}$$
 costruzione esplicita

$$\begin{bmatrix} \mathbb{Z}_2 \\ \{0\} \end{bmatrix}$$
 solo alcuni esempi

Introduzione 00000000000

Classificazione delle superfici di Godeaux:

$$\begin{bmatrix} \mathbb{Z}_5 \\ \mathbb{Z}_4 \\ \mathbb{Z}_3 \end{bmatrix}$$
 costruzione esplicita

$$egin{array}{c} \mathbb{Z}_2 \\ \{0\} \end{array} \}$$
 solo alcuni esempi

Calcoliamo Aut(S) per S appartenente a una delle prime due classi.

Una superficie è

Una superficie è

• una varietà algebrica di dimensione due,

$\overline{\text{Terminologia }(I)}$

Una superficie è

• una varietà algebrica di dimensione due,

• sui numeri complessi,

$\mathsf{Terminologia}$ (I)

Una superficie è

• una varietà algebrica di dimensione due,

• sui numeri complessi,

• proiettiva.

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva.

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

Invarianti delle superfici:

K²;

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K²;
- $p_g := h^0(K);$

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K²;
- $p_g := h^0(K)$;
- $q := h^1(K)$;

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K^2 ;
 - $p_g := h^0(K)$;
 - $q := h^1(K)$;
 - $\chi := h^0(\mathcal{O}) h^1(\mathcal{O}) + h^2(\mathcal{O});$

Terminologia (11)

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K²;
 - $p_g := h^0(K)$;
 - $q := h^1(K)$;
 - $\chi := h^0(\mathcal{O}) q + p_g$;

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K²;
- $p_g := h^0(K)$;
- $q := h^1(K)$;
- $\chi := 1 q + p_g$;

Introduzione 00000000000

> Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K^2 :
 - $p_g := h^0(K)$;
 - $q := h^1(K)$;
 - $\chi := 1 q + p_g$;
 - $\kappa = \max_{n \geq 0} \dim \operatorname{Im} \varphi_{\lfloor nK \rfloor}$.

Una superficie è una varietà algebrica di dimensione due, sui numeri complessi, proiettiva (liscia, minimale).

- K^2 ;
 - $p_g := h^0(K)$;
 - $q := h^1(K)$;
 - $\chi \coloneqq 1 \mathsf{q} + \mathsf{p}_\mathsf{g}$;
 - $\kappa = \dim \operatorname{Proj} \bigoplus_{n \geq 0} H^0(nK)$.

Classificazione di Enriques-Kodaira:

• $\kappa = -\infty$: superfici razionali o rigate;

- $\kappa = -\infty$: superfici razionali o rigate;
- $\kappa = 0$: superfici di Enriques, iperellittiche, K3 o abeliane;

- $\kappa = -\infty$: superfici razionali o rigate;
- $\kappa = 0$: superfici di Enriques, iperellittiche, K3 o abeliane;
- $\kappa=1$: superfici propriamente ellittiche;

- $\kappa = -\infty$: superfici razionali o rigate;
- $\kappa = 0$: superfici di Enriques, iperellittiche, K3 o abeliane;
- $\kappa=1$: superfici propriamente ellittiche;
- $\kappa = 2$: superfici di tipo generale.

Una superficie di Godeaux è una superficie:

Una superficie di Godeaux è una superficie:

liscia;

Una superficie di Godeaux è una superficie:

liscia;

• minimale;

Una superficie di Godeaux è una superficie:

liscia;

- minimale;
- di tipo generale;

Una superficie di Godeaux è una superficie:

liscia;

· minimale;

- di tipo generale;
- con $p_g = q = 0$ e $K^2 = 1$.

Perché studiare le superfici di Godeaux?

Perché studiare le superfici di Godeaux?

La superficie di Godeaux classica (1931), è il primo esempio di superficie di tipo generale con $p_g=q=0$.

Perché studiare le superfici di Godeaux?

La superficie di Godeaux classica (1931), è il primo esempio di superficie di tipo generale con $p_g=q=0$.

Costruzione: quoziente della quintica di Fermat in \mathbb{P}^3 , $x_1^5+x_2^5+x_3^5+x_4^5=0$, per un'azione libera di \mathbb{Z}_5 .

Miyaoka (1976)
$$\longleftrightarrow$$
 Tors $\cong \mathbb{Z}_t$, $t \leq 5$.
Costruzione delle SdG con Tors $\cong \mathbb{Z}_5$.

Miyaoka (1976)
$$\longleftrightarrow$$
 Tors $\cong \mathbb{Z}_t$, $t \leq 5$.
Costruzione delle SdG con Tors $\cong \mathbb{Z}_5$.

Reid (1978)
$$\longleftrightarrow$$
 Costruzione delle SdG con Tors $\cong \mathbb{Z}_4$. Costruzione delle SdG con Tors $\cong \mathbb{Z}_3$.

Miyaoka (1976)
$$\longleftrightarrow$$
 Tors $\cong \mathbb{Z}_t$, $t \leq 5$.
Costruzione delle SdG con Tors $\cong \mathbb{Z}_5$.

Reid (1978)
$$\longleftrightarrow$$
 Costruzione delle SdG con Tors $\cong \mathbb{Z}_4$. Costruzione delle SdG con Tors $\cong \mathbb{Z}_3$.

Barlow (1984–1985)
$$\longleftrightarrow$$
 Esistenza di SdG con Tors $\cong \mathbb{Z}_2$.
Esistenza di SdG con Tors $\cong \{0\}$.

Automorfismi

Per una superficie di tipo generale S:

Andreotti (1950) \longleftrightarrow Aut(S) è finito. Stima esponenziale per |Aut(S)|.

Automorfismi

Per una superficie di tipo generale S:

Andreotti (1950)
$$\longleftrightarrow$$
 $Aut(S)$ è finito.
Stima esponenziale per $|Aut(S)|$.

Corti (1991)
$$\longleftrightarrow$$
 $|\operatorname{Aut}(S)| \leq c \cdot (K_S^2)^{10}$.

Automorfismi

Per una superficie di tipo generale S:

Andreotti (1950)
$$\longleftrightarrow$$
 $Aut(S)$ è finito.
Stima esponenziale per $|Aut(S)|$.

Corti (1991)
$$\longleftrightarrow$$
 $|\operatorname{Aut}(S)| \leq c \cdot (K_S^2)^{10}$.

$$\mathsf{Xiao} \ (1995) \qquad \longleftrightarrow \quad |\operatorname{\mathsf{Aut}}(S)| \leq 42^2 \cdot \mathsf{K}_S^2.$$

Prerequisiti (I)

Un morfismo dominante $f: X_1 \to X_2$ induce un morfismo $f^*\colon H^0(nK_{X_2}) \to H^0(nK_{X_1})$ per ogni $n \ge 0$. La corrispondenza $f \mapsto f^*$ è funtoriale. In particolare:

Prerequisiti (I)

Un morfismo dominante $f: X_1 \to X_2$ induce un morfismo $f^*: H^0(nK_{X_2}) \to H^0(nK_{X_1})$ per ogni $n \ge 0$. La corrispondenza $f \mapsto f^*$ è funtoriale. In particolare:

il diagramma

$$X_{1} \xrightarrow{\varphi_{\mid nK_{X_{1}}\mid}} \mathbb{P}(\mathsf{H}^{0}(nK_{X_{1}}))^{\vee}$$

$$f \downarrow \qquad \qquad \downarrow \mathbb{P}(f^{*})^{\vee}$$

$$X_{2} \xrightarrow{\varphi_{\mid nK_{X_{2}}\mid}} \mathbb{P}(\mathsf{H}^{0}(nK_{X_{2}}))^{\vee}$$

è commutativo;

Prerequisiti (I)

Un morfismo dominante $f: X_1 \to X_2$ induce un morfismo $f^*: H^0(nK_{X_2}) \to H^0(nK_{X_1})$ per ogni $n \ge 0$. La corrispondenza $f \mapsto f^*$ è funtoriale. In particolare:

il diagramma

$$X_{1} \xrightarrow{\varphi_{|nK_{X_{1}}|}} \mathbb{P}(\mathsf{H}^{0}(nK_{X_{1}}))^{\vee}$$

$$f \downarrow \qquad \qquad \downarrow \mathbb{P}(f^{*})^{\vee}$$

$$X_{2} \xrightarrow{\varphi_{|nK_{X_{2}}|}} \mathbb{P}(\mathsf{H}^{0}(nK_{X_{2}}))^{\vee}$$

è commutativo;

• un'azione $G \to \operatorname{Aut}(X)$ induce un'azione $G \to \operatorname{Aut}(\operatorname{H}^0(nK_X))$.

Prerequisiti (11)

Sia X una superficie e $\varphi\colon X \dashrightarrow \mathbb{P}^r$ una mappa n-canonica. Un'azione $\rho\colon G \to \operatorname{Aut}(X)$ induce un'azione $\tau\colon G \to \operatorname{Aut}(\mathbb{P}^r)$; se φ è un'immersione, $\tau_{|\varphi(X)} = \rho$.

Prerequisiti (II)

Sia X una superficie e $\varphi\colon X \dashrightarrow \mathbb{P}^r$ una mappa n-canonica. Un'azione $\rho\colon G \to \operatorname{Aut}(X)$ induce un'azione $\tau\colon G \to \operatorname{Aut}(\mathbb{P}^r)$; se φ è un'immersione, $\tau_{|\varphi(X)} = \rho$. Se G è abeliano e finito, τ è diagonale.

Prerequisiti (II)

Sia X una superficie e $\varphi\colon X \dashrightarrow \mathbb{P}^r$ una mappa n-canonica. Un'azione $\rho\colon G \to \operatorname{Aut}(X)$ induce un'azione $\tau\colon G \to \operatorname{Aut}(\mathbb{P}^r)$; se φ è un'immersione, $\tau_{|\varphi(X)} = \rho$. Se G è abeliano e finito, τ è diagonale.

Se S è una SdG, fissiamo un isomorfismo $\mathbb{Z}_t \to \mathsf{Tors}(S)$, $i \mapsto D_i$; allora esiste un rivestimento $X \to S$ étale, di Galois, con gruppo di Galois \mathbb{Z}_t .

Prerequisiti (II)

Sia X una superficie e $\varphi\colon X \dashrightarrow \mathbb{P}^r$ una mappa n-canonica. Un'azione $\rho\colon G \to \operatorname{Aut}(X)$ induce un'azione $\tau\colon G \to \operatorname{Aut}(\mathbb{P}^r)$; se φ è un'immersione, $\tau_{|\varphi(X)} = \rho$. Se G è abeliano e finito, τ è diagonale.

Se S è una SdG, fissiamo un isomorfismo $\mathbb{Z}_t \to \mathsf{Tors}(S)$, $i \mapsto D_i$; allora esiste un rivestimento $X \to S$ étale, di Galois, con gruppo di Galois \mathbb{Z}_t .

 \mathbb{Z}_t agisce su X, quindi anche su $\mathrm{H}^0(nK_X)$; per costruzione, $\mathrm{H}^0(nK_X)\cong \bigoplus_{i\in \mathbb{Z}_t} \mathrm{H}^0(nK_S+D_i)$

come \mathbb{Z}_t -rappresentazioni.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_t$, $t \in \{4,5\}$.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_t$, $t \in \{4, 5\}$.

 $oldsymbol{0}$ Calcolo di generatori e relazioni dell'anello canonico di X.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_t$, $t \in \{4, 5\}$.

- 1 Calcolo di generatori e relazioni dell'anello canonico di X.
- $oldsymbol{2}$ Descrizione esplicita del modello canonico di X.

Filosofia¹

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_t$, $t \in \{4, 5\}$.

- 1 Calcolo di generatori e relazioni dell'anello canonico di X.
- 2 Descrizione esplicita del modello canonico di X.
- Viceversa: la risoluzione minimale delle singolarità del quoziente di una superficie che segue la descrizione è una SdG.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_t$, $t \in \{4, 5\}$.

- 1 Calcolo di generatori e relazioni dell'anello canonico di X.
- 2 Descrizione esplicita del modello canonico di X.
- Viceversa: la risoluzione minimale delle singolarità del quoziente di una superficie che segue la descrizione è una SdG.
- 4 Semplificazione graduale dei parametri per determinare lo spazio dei moduli.

Più semplice: si può descrivere il rivestimento senza passare per l'anello canonico.

Più semplice: si può descrivere il rivestimento senza passare per l'anello canonico.

Sia
$$X \to S$$
 il rivestimento; allora X ha: $K_X^2 = 5$, $\chi(\mathcal{O}_X) = 5$, $q(X) = 0$, $p_g(X) = 4$: X è una superficie di Horikawa.

Più semplice: si può descrivere il rivestimento senza passare per l'anello canonico.

Sia
$$X \to S$$
 il rivestimento; allora X ha: $K_X^2 = 5$, $\chi(\mathcal{O}_X) = 5$, $q(X) = 0$, $p_g(X) = 4$: X è una superficie di Horikawa.

Proposizione

S SdG $con\ \mathsf{Tors}(S) \cong \mathbb{Z}_5$, allora X è la risoluzione minimale delle singolarità di una superficie quintica di \mathbb{P}^3 $con\ al\ più\ PDR$.

Più semplice: si può descrivere il rivestimento senza passare per l'anello canonico.

Sia
$$X \to S$$
 il rivestimento; allora X ha: $K_X^2 = 5$, $\chi(\mathcal{O}_X) = 5$, $q(X) = 0$, $p_g(X) = 4$: X è una superficie di Horikawa.

Proposizione

 $S \ SdG \ con \ Tors(S) \cong \mathbb{Z}_5$, allora $X \ e$ la risoluzione minimale delle singolarità di una superficie quintica di \mathbb{P}^3 con al più PDR.

Proposizione

X quintica di \mathbb{P}^3 con al più PDR, $\rho \colon \mathbb{Z}_5 \to \operatorname{Aut}(X)$ libera, allora la risoluzione minimale delle singolarità S di X/ρ è una SdG con $\operatorname{Tors}(S) \cong \mathbb{Z}_5$.

$$\left\{ \begin{array}{l} X\subseteq \mathbb{P}^3,\ \deg X=5\\ X\ \text{con al più PDR},\\ \rho\colon \mathbb{Z}_5\to \operatorname{Aut}(X)\ \text{libera} \end{array} \right\} \longrightarrow \left\{ \operatorname{SdG}\ \operatorname{con}\ \operatorname{Tors}\cong \mathbb{Z}_5 \right\}$$

$$\left\{ \begin{array}{l} X\subseteq \mathbb{P}^3,\ \deg X=5\\ X\ \text{con al più PDR},\\ \rho\colon \mathbb{Z}_5\to \operatorname{Aut}(X)\ \text{libera} \end{array} \right\} \longrightarrow \left\{ \operatorname{SdG}\ \operatorname{con}\ \operatorname{Tors}\cong \mathbb{Z}_5 \right\}$$

 ρ si estende a un'azione su \mathbb{P}^3 con $\rho_1 = \text{diag}(\xi^{i_1}, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

$$\left\{ \begin{array}{l} X\subseteq \mathbb{P}^3,\ \deg X=5\\ X\ \text{con al più PDR,}\\ \rho\colon \mathbb{Z}_5\to \operatorname{Aut}(X)\ \text{libera} \end{array} \right\} \longrightarrow \left\{ \operatorname{\mathsf{SdG}}\ \operatorname{\mathsf{con Tors}}\cong \mathbb{Z}_5 \right\}$$

 ρ si estende a un'azione su \mathbb{P}^3 con $\rho_1 = \text{diag}(\xi^{i_1}, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

Gli esponenti sono distinti, altrimenti in \mathbb{P}^3 ci sarebbe una retta di punti fissi. A meno di permutare, $\rho_1 = \text{diag}(\xi, \xi^2, \xi^3, \xi^4)$.

$$\left\{\begin{array}{l} X\subseteq\mathbb{P}^3,\ \deg X=5\\ X\ \text{con al più PDR},\\ \rho\colon\mathbb{Z}_5\to\operatorname{Aut}(X)\ \text{libera} \end{array}\right\} \longrightarrow \left\{\operatorname{SdG}\ \text{con Tors}\cong\mathbb{Z}_5\right\}$$

 ρ si estende a un'azione su \mathbb{P}^3 con $\rho_1 = \text{diag}(\xi^{i_1}, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

Gli esponenti sono distinti, altrimenti in \mathbb{P}^3 ci sarebbe una retta di punti fissi. A meno di permutare, $\rho_1 = \text{diag}(\xi, \xi^2, \xi^3, \xi^4)$.

Fissata l'azione, dobbiamo trovare le quintiche che non intersecano il luogo dei punti fissi e invarianti.

I punti fissi di ρ sono i quattro punti coordinati di $\mathbb{P}^3 \Rightarrow$ riscalando le coordinate, i coefficienti di x_i^5 sono 1.

I punti fissi di ρ sono i quattro punti coordinati di $\mathbb{P}^3 \Rightarrow$ riscalando le coordinate, i coefficienti di x_i^5 sono 1.

I punti fissi di ρ sono i quattro punti coordinati di $\mathbb{P}^3 \Rightarrow$ riscalando le coordinate, i coefficienti di x_i^5 sono 1.

$$x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}\longmapsto \xi^{i_1+2i_2+3i_3+4i_4}x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}$$

I punti fissi di ρ sono i quattro punti coordinati di $\mathbb{P}^3 \Rightarrow$ riscalando le coordinate, i coefficienti di x_i^5 sono 1.

$$x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}\longmapsto \xi^{i_1+2i_2+3i_3+4i_4}x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}$$

$$X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + + b_1 x_2 x_3^3 x_4 + b_2 x_1^3 x_3 x_4 + b_3 x_1 x_2 x_4^3 + b_4 x_1 x_2^3 x_3 + + c_1 x_2^2 x_3 x_4^2 + c_2 x_1 x_3^2 x_4^2 + c_3 x_1^2 x_2^2 x_4 + c_4 x_1^2 x_2 x_3^2$$

I punti fissi di ρ sono i quattro punti coordinati di $\mathbb{P}^3 \Rightarrow$ riscalando le coordinate, i coefficienti di x_i^5 sono 1.

$$x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}\longmapsto \xi^{i_1+2i_2+3i_3+4i_4}x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}$$

$$X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + + b_1 x_2 x_3^3 x_4 + b_2 x_1^3 x_3 x_4 + b_3 x_1 x_2 x_4^3 + b_4 x_1 x_2^3 x_3 + + c_1 x_2^2 x_3 x_4^2 + c_2 x_1 x_3^2 x_4^2 + c_3 x_1^2 x_2^2 x_4 + c_4 x_1^2 x_2 x_3^2$$

$$\varnothing \neq \widetilde{\mathfrak{M}}_5 \subseteq \mathbb{A}^8$$
,

I punti fissi di ρ sono i quattro punti coordinati di $\mathbb{P}^3 \Rightarrow$ riscalando le coordinate, i coefficienti di x_i^5 sono 1.

Le quintiche invarianti sono quelle i cui monomi sono nello stesso autospazio rispetto a ρ .

$$x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}\longmapsto \xi^{i_1+2i_2+3i_3+4i_4}x_1^{i_1}x_2^{i_2}x_3^{i_3}x_4^{i_4}$$

$$X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + + b_1 x_2 x_3^3 x_4 + b_2 x_1^3 x_3 x_4 + b_3 x_1 x_2 x_4^3 + b_4 x_1 x_2^3 x_3 + + c_1 x_2^2 x_3 x_4^2 + c_2 x_1 x_3^2 x_4^2 + c_3 x_1^2 x_2^2 x_4 + c_4 x_1^2 x_2 x_3^2$$

 $\varnothing \neq \widetilde{\mathfrak{M}}_5 \subseteq \mathbb{A}^8$, \mathfrak{M}_5 è un quoziente di $\widetilde{\mathfrak{M}}_5$.

Quando due punti di \mathfrak{M}_5 danno SdG isomorfe?

Quando due punti di \mathfrak{M}_5 danno SdG isomorfe?

$$\psi \colon \mathcal{S}_1 \xrightarrow{\sim} \mathcal{S}_2 \Rightarrow \exists \varphi \colon X_1 \xrightarrow{\sim} X_2$$
 tale che

$$X_1 \xrightarrow{\varphi} X_2$$

$$\downarrow \quad \circlearrowright \quad \downarrow$$

$$S_1 \xrightarrow{\psi} S_2$$

Quando due punti di \mathfrak{M}_5 danno SdG isomorfe?

$$\psi \colon \mathcal{S}_1 \xrightarrow{\sim} \mathcal{S}_2 \Rightarrow \exists \varphi \colon X_1 \xrightarrow{\sim} X_2$$
 tale che

$$X_1 \xrightarrow{\varphi} X_2$$

$$\downarrow \quad \circlearrowright \quad \downarrow$$

$$S_1 \xrightarrow{\psi} S_2$$

 φ si estende a un automorfismo di \mathbb{P}^3 .

Quando due punti di \mathfrak{M}_5 danno SdG isomorfe?

$$\psi \colon \mathcal{S}_1 \xrightarrow{\sim} \mathcal{S}_2 \Rightarrow \exists \varphi \colon X_1 \xrightarrow{\sim} X_2$$
 tale che

$$X_1 \xrightarrow{\varphi} X_2$$

$$\downarrow \quad \circlearrowright \quad \downarrow$$

$$S_1 \xrightarrow{\widetilde{\psi}} S_2$$

 φ si estende a un automorfismo di \mathbb{P}^3 .

Cerchiamo gli automorfismi di \mathbb{P}^3 che inducono un isomorfismo tra SdG: sono quelli compatibili con ρ (condizione indipendente dalle particolari SdG).

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^3, \forall k \in \mathbb{Z}_5, \exists h \in \mathbb{Z}_5 \colon \rho_h \varphi(x) = \varphi \rho_k(x) \Leftrightarrow$$

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^3, \forall k \in \mathbb{Z}_5, \exists h \in \mathbb{Z}_5 \colon \rho_h \varphi(x) = \varphi \rho_k(x) \Leftrightarrow \\ \Leftrightarrow \forall x \in \mathbb{P}^3, \exists h \in \mathbb{Z}_5 \colon \rho_h \varphi(x) = \varphi \rho_1(x) \Leftrightarrow$$

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^3, \forall k \in \mathbb{Z}_5, \exists h \in \mathbb{Z}_5 \colon \rho_h \varphi(x) = \varphi \rho_k(x) \Leftrightarrow \\ \Leftrightarrow \forall x \in \mathbb{P}^3, \exists h \in \mathbb{Z}_5 \colon \rho_h \varphi(x) = \varphi \rho_1(x) \Leftrightarrow \\ \Leftrightarrow \exists h \in \mathbb{Z}_5 \colon \rho_h \varphi = \varphi \rho_1 \Leftrightarrow$$

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^{3}, \forall k \in \mathbb{Z}_{5}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{k}(x) \Leftrightarrow \Leftrightarrow \forall x \in \mathbb{P}^{3}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{1}(x) \Leftrightarrow \Leftrightarrow \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi = \varphi\rho_{1} \Leftrightarrow \varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^{3})}(\mathbb{Z}_{5})$$

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^{3}, \forall k \in \mathbb{Z}_{5}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{k}(x) \Leftrightarrow \Leftrightarrow \forall x \in \mathbb{P}^{3}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{1}(x) \Leftrightarrow \Leftrightarrow \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi = \varphi\rho_{1} \Leftrightarrow \varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^{3})}(\mathbb{Z}_{5})$$

I punti fissi di ρ sono i punti coordinati $\Rightarrow \varphi = \sigma d$.

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^{3}, \forall k \in \mathbb{Z}_{5}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{k}(x) \Leftrightarrow \Leftrightarrow \forall x \in \mathbb{P}^{3}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{1}(x) \Leftrightarrow \Leftrightarrow \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi = \varphi\rho_{1} \Leftrightarrow \varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^{3})}(\mathbb{Z}_{5})$$

I punti fissi di ρ sono i punti coordinati $\Rightarrow \varphi = \sigma d$.

Se $\varphi = \sigma d$, φ fissa $\sum x_i^5$ nelle quintiche $\Rightarrow d = \text{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

Quando $\varphi \in Aut(\mathbb{P}^3)$ passa al quoziente rispetto a ρ ?

$$\forall x \in \mathbb{P}^{3}, \forall k \in \mathbb{Z}_{5}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{k}(x) \Leftrightarrow \Leftrightarrow \forall x \in \mathbb{P}^{3}, \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi(x) = \varphi\rho_{1}(x) \Leftrightarrow \Leftrightarrow \exists h \in \mathbb{Z}_{5} \colon \rho_{h}\varphi = \varphi\rho_{1} \Leftrightarrow \varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^{3})}(\mathbb{Z}_{5})$$

I punti fissi di ho sono i punti coordinati $\Rightarrow \varphi = \sigma d$.

Se $\varphi = \sigma d$, φ fissa $\sum x_i^5$ nelle quintiche $\Rightarrow d = \mathrm{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

Deve esistere h tale che $\rho_h = \varphi \rho_1 \varphi^{-1} = \sigma d \rho_1 d^{-1} \sigma^{-1} = \sigma \rho_1 \sigma^{-1}$.

$$h = 1$$
 $\overline{1} := Id$,
 $h = 2$ $\overline{2} := (2, 1, 3, 4)$,
 $h = 3$ $\overline{3} := (1, 2, 4, 3)$,
 $h = 4$ $\overline{4} := (1, 4)(3, 2)$.

$$h = 1$$
 $\overline{1} := Id$,
 $h = 2$ $\overline{2} := (2, 1, 3, 4)$,
 $h = 3$ $\overline{3} := (1, 2, 4, 3)$,
 $h = 4$ $\overline{4} := (1, 4)(3, 2)$.

Se $\rho_h = \varphi \rho_1 \varphi^{-1}$, diciamo che φ ha tipo \overline{h} $(h \in \mathbb{Z}_5^*)$.

$$h = 1$$
 $\overline{1} := Id,$
 $h = 2$ $\overline{2} := (2, 1, 3, 4),$
 $h = 3$ $\overline{3} := (1, 2, 4, 3),$
 $h = 4$ $\overline{4} := (1, 4)(3, 2).$

Se $\rho_h = \varphi \rho_1 \varphi^{-1}$, diciamo che φ ha tipo \overline{h} $(h \in \mathbb{Z}_5^*)$.

Conclusione: il gruppo degli automorfismi che passano al quoziente, $N_{Aut(\mathbb{P}^3)}(\mathbb{Z}_5)$, è isomorfo a $\mathbb{Z}_5^3 \ltimes \mathbb{Z}_4 \Rightarrow$ è finito \Rightarrow dim $\mathfrak{M}_5 = 8$.

Fissiamo una SdG S e una quintica associata X, della forma $X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + \\ + b_1 x_2 x_3^3 x_4 + b_2 x_1^3 x_3 x_4 + b_3 x_1 x_2 x_4^3 + b_4 x_1 x_2^3 x_3 + \\ + c_1 x_2^2 x_3 x_4^2 + c_2 x_1 x_3^2 x_4^2 + c_3 x_1^2 x_2^2 x_4 + c_4 x_1^2 x_2 x_3^2$

Fissiamo una SdG S e una quintica associata X, della forma $X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + \\ + b_1x_2x_3^3x_4 + b_2x_1^3x_3x_4 + b_3x_1x_2x_4^3 + b_4x_1x_2^3x_3 + \\ + c_1x_2^2x_3x_4^2 + c_2x_1x_3^2x_4^2 + c_3x_1^2x_2^2x_4 + c_4x_1^2x_2x_3^2$

 $\psi \in \operatorname{Aut}(S)$ si solleva a $\varphi \in \operatorname{Aut}(X)$, che si estende a $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$.

Fissiamo una SdG S e una quintica associata X, della forma $X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + \\ + b_1 x_2 x_3^3 x_4 + b_2 x_1^3 x_3 x_4 + b_3 x_1 x_2 x_4^3 + b_4 x_1 x_2^3 x_3 + \\ + c_1 x_2^2 x_3 x_4^2 + c_2 x_1 x_3^2 x_4^2 + c_3 x_1^2 x_2^2 x_4 + c_4 x_1^2 x_2 x_3^2$

 $\psi \in \operatorname{Aut}(S)$ si solleva a $\varphi \in \operatorname{Aut}(X)$, che si estende a $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$.

Viceversa, $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$ con $\varphi(X) = X$, $\varphi \in \operatorname{N}_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ induce $\psi \in \operatorname{Aut}(S)$.

Fissiamo una SdG S e una quintica associata X, della forma $X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + \\ + b_1x_2x_3^3x_4 + b_2x_1^3x_3x_4 + b_3x_1x_2x_4^3 + b_4x_1x_2^3x_3 + \\ + c_1x_2^2x_3x_4^2 + c_2x_1x_3^2x_4^2 + c_3x_1^2x_2^2x_4 + c_4x_1^2x_2x_3^2$

 $\psi \in \operatorname{Aut}(S)$ si solleva a $\varphi \in \operatorname{Aut}(X)$, che si estende a $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$.

Viceversa, $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$ con $\varphi(X) = X$, $\varphi \in \operatorname{N}_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ induce $\psi \in \operatorname{Aut}(S)$.

$$\mathsf{N}_{\mathsf{Aut}(X)}(\mathbb{Z}_5) o \mathsf{Aut}(S) o 0$$

Fissiamo una SdG S e una quintica associata X, della forma $X := x_1^5 + x_2^5 + x_3^5 + x_4^5 + \\ + b_1x_2x_3^3x_4 + b_2x_1^3x_3x_4 + b_3x_1x_2x_4^3 + b_4x_1x_2^3x_3 + \\ + c_1x_2^2x_3x_4^2 + c_2x_1x_3^2x_4^2 + c_3x_1^2x_2^2x_4 + c_4x_1^2x_2x_3^2$

 $\psi \in \operatorname{Aut}(S)$ si solleva a $\varphi \in \operatorname{Aut}(X)$, che si estende a $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$.

Viceversa, $\varphi \in \operatorname{Aut}(\mathbb{P}^3)$ con $\varphi(X) = X$, $\varphi \in \operatorname{N}_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ induce $\psi \in \operatorname{Aut}(S)$.

$$0 \to \mathbb{Z}_5 \to \mathsf{N}_{\mathsf{Aut}(X)}(\mathbb{Z}_5) \to \mathsf{Aut}(S) \to 0$$

Dobbiamo determinare $N_{\operatorname{Aut}(X)}(\mathbb{Z}_5)$, cioè gli automorfismi $\varphi \in N_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ con $\varphi(X) = X$.

Dobbiamo determinare $N_{\operatorname{Aut}(X)}(\mathbb{Z}_5)$, cioè gli automorfismi $\varphi \in N_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ con $\varphi(X) = X$.

$$\varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5) \Leftrightarrow \varphi = \mathit{M}_{\overline{h}}\,\mathsf{diag}(1,\xi^{i_2},\xi^{i_3},\xi^{i_4}).$$

Dobbiamo determinare $N_{\operatorname{Aut}(X)}(\mathbb{Z}_5)$, cioè gli automorfismi $\varphi \in N_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ con $\varphi(X) = X$.

$$\varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5) \Leftrightarrow \varphi = \mathit{M}_{\overline{h}}\,\mathsf{diag}(1,\xi^{i_2},\xi^{i_3},\xi^{i_4}).$$

 $\varphi(X) = X \Leftrightarrow \varphi$ manda l'equazione di X in un suo multiplo

Dobbiamo determinare $N_{\operatorname{Aut}(X)}(\mathbb{Z}_5)$, cioè gli automorfismi $\varphi \in N_{\operatorname{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5)$ con $\varphi(X) = X$.

$$\varphi \in \mathsf{N}_{\mathsf{Aut}(\mathbb{P}^3)}(\mathbb{Z}_5) \Leftrightarrow \varphi = \mathit{M}_{\overline{h}}\,\mathsf{diag}(1,\xi^{i_2},\xi^{i_3},\xi^{i_4}).$$

 $\varphi(X) = X \Leftrightarrow \varphi$ manda l'equazione di X in un suo multiplo $\Leftrightarrow \varphi$ è normalizzata e manda l'equazione di X in sé.

Automorfismi di tipo $\overline{1}$: $\varphi = \text{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

Automorfismi di tipo $\overline{1}$: $\varphi = \text{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

	$x_2x_3^3x_4$	$x_1^3 x_3 x_4$	$x_1x_2x_4^3$	$x_1x_2^3x_3$
X	b_1	b_2	b_3	b_4
		\downarrow	\downarrow	\downarrow
$\varphi(X)$	$b_1 \xi^{i_2+3i_3+i_4}$	$b_2\xi^{i_3+i_4}$	$b_3\xi^{i_2+3i_4}$	$b_4\xi^{3i_2+i_3}$

$$\varphi = \operatorname{diag}(1,\xi^{i_2},\xi^{i_3},\xi^{i_4})\text{, allora }\varphi(X) = X \Leftrightarrow$$

$$\begin{cases} i_2 + 3i_3 + i_4 \equiv 0, & 2i_2 + i_3 + 2i_4 \equiv 0, \\ i_3 + i_4 \equiv 0, & 2i_3 + 2i_4 \equiv 0, \\ i_2 + 3i_4 \equiv 0, & 2i_2 + i_4 \equiv 0, \\ 3i_2 + i_3 \equiv 0, & i_2 + 2i_3 \equiv 0, \end{cases} \Leftrightarrow \begin{cases} i_3 \equiv 2i_2, \\ i_4 \equiv 3i_2. \end{cases}$$

$$\varphi = \operatorname{diag}(1,\xi^{i_2},\xi^{i_3},\xi^{i_4}), \text{ allora } \varphi(X) = X \Leftrightarrow$$

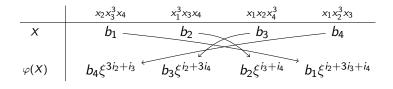
$$\begin{cases} i_2 + 3i_3 + i_4 \equiv 0, & 2i_2 + i_3 + 2i_4 \equiv 0, \\ i_3 + i_4 \equiv 0, & 2i_3 + 2i_4 \equiv 0, \\ i_2 + 3i_4 \equiv 0, & 2i_2 + i_4 \equiv 0, \\ 3i_2 + i_3 \equiv 0, & i_2 + 2i_3 \equiv 0, \end{cases} \Leftrightarrow \begin{cases} i_3 \equiv 2i_2, \\ i_4 \equiv 3i_2. \end{cases}$$

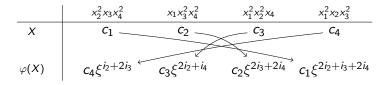
$\widetilde{V}\subseteq \mathbb{A}^8$	$Aut_{\overline{1}}(\mathcal{S})$	$\left \operatorname{Aut}_{\overline{1}}(\mathcal{S})\right $	$\dim \widetilde{V}$	$\left \{\widetilde{V}_i\}\right $
Õ	\mathbb{Z}_5^2	25	0	1
$\widetilde{H}\setminus\widetilde{\mathcal{O}}$	\mathbb{Z}_5	5	2	4
$\mathbb{A}^8\setminus\widetilde{H}$	$\{Id\}$	1	8	1

Automorfismi $\mathbb{Z}_{\overline{5}}(V)$

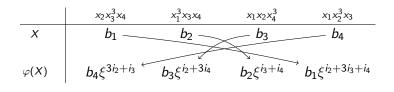
Automorfismi di tipo $\overline{4}$: $\varphi = M_{\overline{4}} \operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

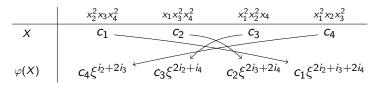
Automorfismi di tipo $\overline{4}$: $\varphi = M_{\overline{4}} \operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.





Automorfismi di tipo $\overline{4}$: $\varphi = M_{\overline{4}} \operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.





$$b_i b_j^{-1} = \xi^{n_{i,j}}$$

$$c_i c_j^{-1} = \xi^{m_{i,j}}$$

$$arphi = \mathit{M}_{\overline{4}}\,\mathsf{diag}(1,\xi^{i_2},\xi^{i_3},\xi^{i_4})$$
, allora $arphi(X) = X \Leftrightarrow$

$$\begin{cases} n_{1,4} \equiv 3i_2 + i_3, & m_{1,4} \equiv i_2 + 2i_3, \\ -n_{3,2} \equiv i_2 + 3i_4, & -m_{3,2} \equiv 2i_2 + i_4, \\ n_{3,2} \equiv i_3 + i_4, & m_{3,2} \equiv 2i_3 + 2i_4, \\ -n_{1,4} \equiv i_2 + 3i_3 + i_4, & -m_{1,4} \equiv 2i_2 + i_3 + 2i_4, \end{cases} \Leftrightarrow \begin{cases} n_{3,2} \equiv 2n_{1,4}, \\ m_{1,4} = 2n_{1,4}, \\ m_{3,2} = 4n_{1,4}, \\ i_3 \equiv 2i_2 + n_{1,4}, \\ i_4 \equiv 3i_2 + n_{1,4}, \end{cases}$$

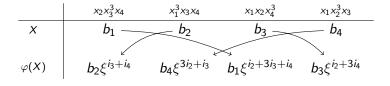
$$arphi = M_{\overline{4}}\operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$$
, allora $arphi(X) = X \Leftrightarrow$

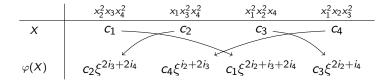
$$\begin{cases} n_{1,4} \equiv 3i_2 + i_3, & m_{1,4} \equiv i_2 + 2i_3, \\ -n_{3,2} \equiv i_2 + 3i_4, & -m_{3,2} \equiv 2i_2 + i_4, \\ n_{3,2} \equiv i_3 + i_4, & m_{3,2} \equiv 2i_3 + 2i_4, \\ -n_{1,4} \equiv i_2 + 3i_3 + i_4, & -m_{1,4} \equiv 2i_2 + i_3 + 2i_4, \end{cases} \Leftrightarrow \begin{cases} n_{3,2} \equiv 2n_{1,4}, \\ m_{1,4} = 2n_{1,4}, \\ m_{3,2} = 4n_{1,4}, \\ i_3 \equiv 2i_2 + n_{1,4}, \\ i_4 \equiv 3i_2 + n_{1,4}, \end{cases}$$

$\widetilde{V}\subseteq \mathbb{A}^8$	$\left \operatorname{Aut}_{\overline{4}}(S)\right $	$dim\;\widetilde{V}$	$\left \{\widetilde{V}_i\}\right $
\widetilde{O}	25	0	1
$\widetilde{\widetilde{Q}}\setminus\widetilde{O}$ $\mathbb{A}^8\setminus\widetilde{Q}$	1	4	5
$\mathbb{A}^8\setminus\widetilde{Q}$	0	8	1

Automorfismi di tipo $\overline{2}$: $\varphi = M_{\overline{2}} \operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.

Automorfismi di tipo $\overline{2}$: $\varphi = M_{\overline{2}} \operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$.





$$\varphi = \mathit{M}_{\overline{2}} \operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4}) \text{, allora } \varphi(X) = X \Leftrightarrow$$

$$\begin{cases} n_{1,2} \equiv i_3 + i_4, & m_{1,2} \equiv 2i_3 + 2i_4, \\ n_{2,4} \equiv 3i_2 + i_3, & m_{2,4} \equiv i_2 + 2i_3, \\ n_{3,1} \equiv i_2 + 3i_3 + i_4, & m_{3,1} \equiv 2i_2 + i_3 + 2i_4, \end{cases} \Leftrightarrow \begin{cases} n_{1,2} \equiv n_{2,4} + m_{4,3}, \\ n_{3,1} \equiv 3n_{2,4} + m_{4,3}, \\ m_{4,3} \equiv 3m_{4,3}, \\ m_{1,2} \equiv 2n_{2,4} + 2m_{4,3}, \\ m_{2,4} \equiv 2n_{2,4}, \\ m_{3,1} \equiv n_{2,4} + 2m_{4,3}, \end{cases}$$
$$\begin{cases} i_3 \equiv 2i_2 + n_{2,4}, \\ i_4 \equiv 3i_2 + m_{4,3}. \end{cases}$$

$$\begin{cases} n_{1,2} \equiv n_{2,4} + m_{4,3}, \\ n_{3,1} \equiv 3n_{2,4} + m_{4,3}, \\ n_{4,3} \equiv 3m_{4,3}, \\ m_{1,2} \equiv 2n_{2,4} + 2m_{4,3}, \\ m_{2,4} \equiv 2n_{2,4}, \\ m_{3,1} \equiv n_{2,4} + 2m_{4,3} \\ i_3 \equiv 2i_2 + n_{2,4}, \\ i_4 = 3i_2 + m_{4,2} \end{cases}$$

$$arphi = M_{\overline{2}}\operatorname{diag}(1, \xi^{i_2}, \xi^{i_3}, \xi^{i_4})$$
, allora $arphi(X) = X \Leftrightarrow$

$$\begin{cases} n_{1,2} \equiv i_3 + i_4, & m_{1,2} \equiv 2i_3 + 2i_4, \\ n_{2,4} \equiv 3i_2 + i_3, & m_{2,4} \equiv i_2 + 2i_3, \\ n_{3,1} \equiv i_2 + 3i_3 + i_4, & m_{3,1} \equiv 2i_2 + i_3 + 2i_4, \\ n_{4,3} \equiv i_2 + 3i_4, & m_{4,3} \equiv 2i_2 + i_4, \end{cases} \Leftrightarrow \begin{cases} n_{1,2} \equiv n_{2,4} + m_{4,3}, \\ n_{3,1} \equiv 3m_{4,3}, \\ m_{1,2} \equiv 2n_{2,4} + 2m_{4,3}, \\ m_{2,4} \equiv 2n_{2,4}, \\ m_{3,1} \equiv n_{2,4} + 2m_{4,3}, \end{cases}$$
$$\begin{cases} i_3 \equiv 2i_2 + n_{2,4}, \\ i_4 \equiv 3i_2 + m_{4,3}. \end{cases}$$

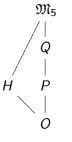
$$\begin{pmatrix}
n_{1,2} \equiv n_{2,4} + m_{4,3}, \\
n_{3,1} \equiv 3n_{2,4} + m_{4,3}, \\
n_{4,3} \equiv 3m_{4,3}, \\
m_{1,2} \equiv 2n_{2,4} + 2m_{4,3}, \\
m_{2,4} \equiv 2n_{2,4}, \\
m_{3,1} \equiv n_{2,4} + 2m_{4,3}, \\
i_3 \equiv 2i_2 + n_{2,4}, \\
i_4 \equiv 3i_2 + m_{4,2}
\end{pmatrix}$$

$\widetilde{V}\subseteq \mathbb{A}^8$	$\left \operatorname{Aut}_{\overline{2}}(\mathcal{S})\right $	$\dim \widetilde{V}$	$\left \{\widetilde{V}_i\}\right $
Õ	25	0	1
$\widetilde{\widetilde{P}}\setminus\widetilde{O}$ $\mathbb{A}^8\setminus\widetilde{P}$	1	2	25
$\mathbb{A}^8\setminus\widetilde{P}$	0	8	1

Abbiamo lavorato in \mathbb{A}^8 : le sottovarietà che abbiamo trovato contengono delle SdG? In altre parole, $\widetilde{\mathfrak{M}}_5 \cap \widetilde{V} \neq \varnothing$?

Abbiamo lavorato in \mathbb{A}^8 : le sottovarietà che abbiamo trovato contengono delle SdG? In altre parole, $\widetilde{\mathfrak{M}}_5 \cap \widetilde{V} \neq \varnothing$?

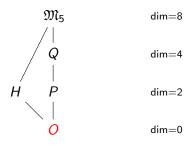
Ogni \widetilde{V} contiene la SdG classica, quindi $\widetilde{\mathfrak{M}}_5 \cap \widetilde{V}$ è un aperto non vuoto di \widetilde{V} .



$$dim=4$$

$$dim=2$$

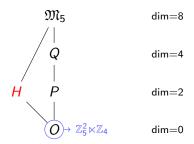
$$dim=0$$



$$|\operatorname{Aut}_{\overline{1}}(S)| \quad |\operatorname{Aut}_{\overline{2}}(S)| \quad |\operatorname{Aut}_{\overline{3}}(S)| \quad |\operatorname{Aut}_{\overline{4}}(S)| \quad \operatorname{Aut}(S)$$

$$25 \qquad 25 \qquad 25 \qquad 25 \qquad \mathbb{Z}_5^2 \ltimes \mathbb{Z}_4$$

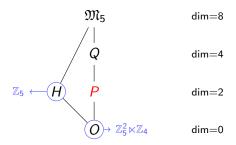
Н



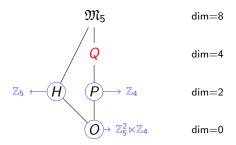
$$|\operatorname{Aut}_{\overline{1}}(S)| \quad |\operatorname{Aut}_{\overline{2}}(S)| \quad |\operatorname{Aut}_{\overline{3}}(S)| \quad |\operatorname{Aut}_{\overline{4}}(S)| \quad \operatorname{Aut}(S)$$

$$5 \quad 0 \quad 0 \quad 0 \quad \mathbb{Z}_{5}$$

Р

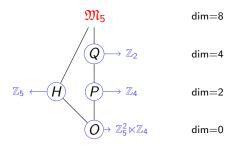


Automorfismi (VIII)

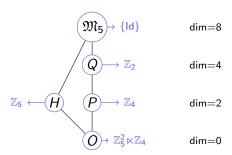


Automorfismi (VIII)

 \mathfrak{M}_{5}



Automorfismi (VIII)



Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Ricordiamo: $H^0(nK_X) \cong \bigoplus_{i \in \mathbb{Z}_4} H^0(nK_S + D_i)$.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Ricordiamo: $H^0(nK_X) \cong \bigoplus_{i \in \mathbb{Z}_4} H^0(nK_S + D_i)$.

Sia S una SdG con Tors(S) $\cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Ricordiamo:
$$H^0(nK_X) \cong \bigoplus_{i \in \mathbb{Z}_4} H^0(nK_S + D_i)$$
.

Sappiamo che
$$h^0(nK_S + D_i) = 1 + \binom{n}{2}$$
 per $n \ge 1$. (Tranne per $h^0(K_S) = p_g(S) = 0$).

$$\begin{array}{c|ccccc} & D_0 & D_1 & D_2 & D_3 \\ \hline K_S & \\ 2K_S & \end{array}$$

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Ricordiamo: $H^0(nK_X) \cong \bigoplus_{i \in \mathbb{Z}_4} H^0(nK_S + D_i)$.

	D_0	D_1	D_2	D_3
K _S 2K _S		x_1	<i>x</i> ₂	<i>X</i> ₃
$2K_S$				

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Ricordiamo: $H^0(nK_X) \cong \bigoplus_{i \in \mathbb{Z}_4} H^0(nK_S + D_i)$.

Sia S una SdG con Tors $(S) \cong \mathbb{Z}_4$. Descriviamo l'anello canonico del rivestimento X.

Ricordiamo: $H^0(nK_X) \cong \bigoplus_{i \in \mathbb{Z}_4} H^0(nK_S + D_i)$.

Inoltre: $h^0(4K_S + D_i) = 7$, ma per k = 0, 2, i monomi di quarto grado in x_i , y_i sono 8.

Inoltre: $h^0(4K_S + D_i) = 7$, ma per k = 0, 2, i monomi di quarto grado in x_i , y_i sono 8.

Ci sono due relazioni di quarto grado tra i monomi in $H^0(4K_S + D_k)$, k = 0, 2.

Inoltre: $h^0(4K_S + D_i) = 7$, ma per k = 0, 2, i monomi di quarto grado in x_i , y_i sono 8.

Ci sono due relazioni di quarto grado tra i monomi in $H^0(4K_S+D_k)$, k=0,2.

Passiamo su X, tramite pullback: sezioni indipendenti rimangono indipendenti e relazioni rimangono relazioni.

Inoltre: $h^0(4K_S + D_i) = 7$, ma per k = 0, 2, i monomi di quarto grado in x_i , y_i sono 8.

Ci sono due relazioni di quarto grado tra i monomi in $H^0(4K_S + D_k)$, k = 0, 2.

Passiamo su X, tramite pullback: sezioni indipendenti rimangono indipendenti e relazioni rimangono relazioni.

Proposizione

I generatori e le relazioni trovati descrivono l'anello canonico di X.

Inoltre: $h^0(4K_S + D_i) = 7$, ma per k = 0, 2, i monomi di quarto grado in x_i , y_i sono 8.

Ci sono due relazioni di quarto grado tra i monomi in $H^0(4K_S+D_k), k=0,2.$

Passiamo su X, tramite pullback: sezioni indipendenti rimangono indipendenti e relazioni rimangono relazioni.

Proposizione

I generatori e le relazioni trovati descrivono l'anello canonico di X.

L'immagine della mappa bicanonica $\varphi_{|2K_X|} \colon X \to \mathbb{P}^7$ è il modello canonico di X.

Cosa significa che i generatori sono di gradi diversi?

Cosa significa che i generatori sono di gradi diversi?

 \mathbb{P}^7 ha coordinate $(x_1^2, x_2^2, x_3^2, x_2x_3, x_1x_3, x_1x_2, y_1, y_3)$:

Cosa significa che i generatori sono di gradi diversi?

 \mathbb{P}^7 ha coordinate $(x_1^2, x_2^2, x_3^2, x_2x_3, x_1x_3, x_1x_2, y_1, y_3)$: creiamo altre relazioni di quarto grado tra le x_i , che tagliano un cono V sulla superficie di Veronese in \mathbb{P}^5 .

Cosa significa che i generatori sono di gradi diversi?

 \mathbb{P}^7 ha coordinate $(x_1^2, x_2^2, x_3^2, x_2x_3, x_1x_3, x_1x_2, y_1, y_3)$: creiamo altre relazioni di quarto grado tra le x_i , che tagliano un cono V sulla superficie di Veronese in \mathbb{P}^5 .

Proposizione

 $S\ SdG\ con\ Tors(S)\cong \mathbb{Z}_4$, allora il rivestimento X è la risoluzione minimale delle singolarità di $X':=\varphi_{|2K_X|}(X)$, l'intersezione di V con due quadriche di \mathbb{P}^7 ; inoltre X' ha al più PDR e non interseca il vertice del cono.

Cosa significa che i generatori sono di gradi diversi?

 \mathbb{P}^7 ha coordinate $(x_1^2, x_2^2, x_3^2, x_2x_3, x_1x_3, x_1x_2, y_1, y_3)$: creiamo altre relazioni di quarto grado tra le x_i , che tagliano un cono V sulla superficie di Veronese in \mathbb{P}^5 .

Proposizione

 $S \ SdG \ con \ Tors(S) \cong \mathbb{Z}_4$, allora il rivestimento $X \ è$ la risoluzione minimale delle singolarità di $X' := \varphi_{|2K_X|}(X)$, l'intersezione di V con due quadriche di \mathbb{P}^7 ; inoltre X' ha al più PDR e non interseca il vertice del cono.

Proposizione

Sia X' come prima, e $\rho \colon \mathbb{Z}_4 \to \operatorname{Aut}(X')$ un'azione libera; la risoluzione minimale delle singolarità di X'/ρ è una SdG con torsione \mathbb{Z}_4 .

I parametri sono: i 16 coefficienti delle quadriche e quelli dell'azione.

I parametri sono: i 16 coefficienti delle quadriche e quelli dell'azione.

Possiamo fissare l'azione: $\rho_1 = diag(\xi^2, 1, \xi^2, \xi, 1, \xi^3, \xi, \xi^3)$.

I parametri sono: i 16 coefficienti delle quadriche e quelli dell'azione.

Possiamo fissare l'azione: $\rho_1 = \text{diag}(\xi^2, 1, \xi^2, \xi, 1, \xi^3, \xi, \xi^3)$.

Le equazioni diventano:

$$q_{0} = a_{1}x_{1}^{4} + a_{2}x_{2}^{4} + a_{3}x_{3}^{4} + a_{1,3}x_{1}^{2}x_{3}^{2} + a_{1,2,3}x_{1}x_{2}^{2}x_{3} + b_{1,3}y_{1}y_{3} + b_{1,2}y_{1}x_{1}x_{2} + b_{2,3}y_{3}x_{2}x_{3},$$

$$q_{2} = c_{1,3}x_{1}^{3}x_{3} + c_{3,1}x_{1}x_{3}^{3} + c_{1,2}x_{1}^{2}x_{2}^{2} + c_{2,3}x_{2}^{2}x_{3}^{2} + d_{1}y_{1}^{2} + d_{3}y_{3}^{2} + d_{2,3}y_{1}x_{2}x_{3} + d_{1,2}y_{3}x_{1}x_{2};$$

I parametri sono: i 16 coefficienti delle quadriche e quelli dell'azione.

Possiamo fissare l'azione: $\rho_1 = \text{diag}(\xi^2, 1, \xi^2, \xi, 1, \xi^3, \xi, \xi^3)$.

Le equazioni diventano:

$$q_{0} = x_{1}^{4} + x_{2}^{4} + x_{3}^{4} + a_{1,3}x_{1}^{2}x_{3}^{2} + a_{1,2,3}x_{1}x_{2}^{2}x_{3} + y_{1}y_{3} + b_{1,2}y_{1}x_{1}x_{2} + b_{2,3}y_{3}x_{2}x_{3},$$

$$q_{2} = c_{1,3}x_{1}^{3}x_{3} + c_{3,1}x_{1}x_{3}^{3} + c_{1,2}x_{1}^{2}x_{2}^{2} + c_{2,3}x_{2}^{2}x_{3}^{2} + y_{1}^{2} + y_{3}^{2};$$

I parametri sono: i 16 coefficienti delle quadriche e quelli dell'azione.

Possiamo fissare l'azione: $\rho_1 = diag(\xi^2, 1, \xi^2, \xi, 1, \xi^3, \xi, \xi^3)$.

Le equazioni diventano:

$$q_{0} = x_{1}^{4} + x_{2}^{4} + x_{3}^{4} + a_{1,3}x_{1}^{2}x_{3}^{2} + a_{1,2,3}x_{1}x_{2}^{2}x_{3} + y_{1}y_{3} + b_{1,2}y_{1}x_{1}x_{2} + b_{2,3}y_{3}x_{2}x_{3},$$

$$q_{2} = c_{1,3}x_{1}^{3}x_{3} + c_{3,1}x_{1}x_{3}^{3} + c_{1,2}x_{1}^{2}x_{2}^{2} + c_{2,3}x_{2}^{2}x_{3}^{2} + y_{1}^{2} + y_{3}^{2};$$

 $\varnothing
eq \widetilde{\mathfrak{M}}_4 \subseteq \mathbb{A}^8$; \mathfrak{M}_4 è un quoziente (finito) di $\widetilde{\mathfrak{M}}_4$.

Come prima, la successione $0 \to \mathbb{Z}_4 \to \mathsf{N}_{\mathsf{Aut}(V)}(\mathbb{Z}_4) \to \mathsf{Aut}(S) \to 0$ è esatta.

Come prima, la successione

$$0 o \mathbb{Z}_4 o \mathsf{N}_{\mathsf{Aut}(V)}(\mathbb{Z}_4) o \mathsf{Aut}(S) o 0$$

è esatta.

Aut(S) è il quoziente per \mathbb{Z}_4 del gruppo di automorfismi di \mathbb{P}^7 , compatibili con ρ , che fissano V e X.

Come prima, la successione

$$0 \to \mathbb{Z}_4 \to \mathsf{N}_{\mathsf{Aut}(V)}(\mathbb{Z}_4) \to \mathsf{Aut}(S) \to 0$$

è esatta.

Aut(S) è il quoziente per \mathbb{Z}_4 del gruppo di automorfismi di \mathbb{P}^7 , compatibili con ρ , che fissano V e X.

Osservazioni:

Come prima, la successione

$$0 o \mathbb{Z}_4 o \mathsf{N}_{\mathsf{Aut}(V)}(\mathbb{Z}_4) o \mathsf{Aut}(S) o 0$$

è esatta.

Aut(S) è il quoziente per \mathbb{Z}_4 del gruppo di automorfismi di \mathbb{P}^7 , compatibili con ρ , che fissano V e X.

Osservazioni:

• i sistemi sono meno regolari di quelli per le SdG con torsione \mathbb{Z}_5 ;

Come prima, la successione

$$0 o \mathbb{Z}_4 o \mathsf{N}_{\mathsf{Aut}(V)}(\mathbb{Z}_4) o \mathsf{Aut}(S) o 0$$

è esatta.

Aut(S) è il quoziente per \mathbb{Z}_4 del gruppo di automorfismi di \mathbb{P}^7 , compatibili con ρ , che fissano V e X.

Osservazioni:

- i sistemi sono meno regolari di quelli per le SdG con torsione \mathbb{Z}_5 ;
- l'origine non corrisponde a una SdG.

Automorfismi $\overline{\mathbb{Z}}_4$ (II)

