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1 Why moduli of quivers representations?
Lecture 1 (1 hour)
June 11th, 2012First of all, quivers representations are a way to formalize problems in linear

algebra, typically very classic. Often these end up with a classification of all
solutions, that depends on continuous and discrete parameters. Moduli spaces
are exactly a way to materialize the continuous parameters.

Even if one is interested in completely different moduli problems, for ex-
ample moduli of vector bundles, quite often can find that moduli of quivers
representations are related to these problems, for example being models (not
intended in a formal sense), or toy examples, or part of the solution, etc.

Another motivation is that moduli of quivers representations are simple
enough to be used as testing ground for techniques in moduli theory.

Finally, in one direction of non-commutative algebraic geometry, moduli
of quivers representations appear as “commutative shadows” of smooth, non-
commutative algebraic geometry.

∗s.maggiolo@gmail.com
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Moduli of representations of quivers

2 Representations of quivers

2.1 definition. A quiver is a finite oriented graph Q; in particular we will
denote with Q0 the set of vertices, with Q1 the set of edges and we will write
α : i→ j for an edge. The maps s, t : Q1 → Q0 associate to each edge the source
and the target vertex.

2.2 example. We do not rule out the possibility of having loops, or multiple
edges between the same source and target, or even multiple loops. We just
assume that the sets Q0 and Q1 are finite.

Intuitively, a representation of a quivers consists of fixing a vector space
for every vertex of the quiver and a linear map for every edge.

2.3 definition. Let k be a field and Q a quiver. A k-representation of Q consists
of a finite dimensional k-vector space Vi at each vertex i ∈ Q0 and a k-linear
map Vα : Vi → Vj for every edge α : i→ j.

2.4 example. If we have the quiver

• •

then studying the representation of it consists of studying all maps between
vector spaces up to base change in the source or the target. If the quiver is

•

then we are studying linear self-maps of vector spaces up to a common base
change in source and target.

In the example we noted that we were studying maps up to base change
of the vector spaces. This is formalized in the notion of equivalent representa-
tions.

2.5 definition. A morphism f : V →W of representations of quivers is a tuple
of k-linear maps fi : Vi → Vj such that “all diagrams commute”, that is, for
every α : i→ j, the diagram

Vi Vj

Wi Wj

Vα

fi f j

Wα

commutes. Two morphisms f : V → W and g : W → X can be composed
defining (g ◦ f )i = gi ◦ fi : Vi → Xi.

The definition of quivers representations and of their morphisms give rise
to a k-linear category repk Q of representations of quivers. This automatically
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gives the notions of isomorphisms and of subobjects.
More precisely, we have:

• two representations V and W are isomorphic if there are morphisms
fi : Vi → Vj for every α : i → j such that Wα = f j ◦ Vα ◦ f−1

i : note how
this is exactly what we said before, since this states that W is isomorphic
to V if and only if Wα can be obtained from Vα by simultaneous base
changes;

• the representation U is a subrepresentation of V if and only if Ui ⊆ Vi
for every i ∈ Q0, and Vα(Ui) ⊆ Uj for every α : i→ j ∈ Q1.

2.6 definition. The dimension vector of Q is the vector dim V := (dimk Vi)i∈Q0 ∈
NQ0 .

2.7 example. Suppose we have the quiver

• •

then classifying all possible representations up to isomorphisms means classi-
fying all possible matrices m× n up to invertible linear combinations of rows
and of columns. We end up with only three discrete invariants: the dimensions
n and m of V0 and V1 and the rank of the matrix.

2.8 example. Suppose we have the quiver

•

then classifying all possible representations up to isomorphisms means classi-
fying all possible square matrices up to conjugacy of elements in GLn. If k = k,
then we have Jordan’s canonical form that gives us continuous invariants (the
eigenvalues) and discrete invariants (the sizes of Jordan’s blocks).

We have seen an example with only discrete invariants and one with dis-
crete and continuous ones. We have a theorem that tells us how to discern the
two cases.

2.9 theorem (Gabriel). The classification problem for representations of the quiver
Q depends only on discrete invariants (that is, after fixing the dimensions of the vector
spaces there are only finitely many isomorphism classes of representations) if and only
if the non-oriented graph of Q is a disjoint union of Dynkin diagrams of type An
(n ≥ 1), Dn (n ≥ 4) or En (6 ≤ n ≤ 8).

2.10 example. Suppose you have only one vertex with two loops, that is, you
want to classify two endomorphisms up to base change. This is the classic
unsolved problem in linear algebra. The strategy could be to put the first en-
domorphism in some normal form, and then try to adjust the second without
changing the good shape of the first. But this turns out to be incredibly dif-
ficult, and this is hinted by the fact that the classification problems for this
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quiver has (dim V)2 + 1 continuous parameters. This can be shown assuming
that the first can be diagonalized with pairwise different eigenvalues; then
permutations and diagonal matrices can act on this endomorphism without
destroying the nice properties. But then one can prove that the second endo-
morphisms can be put in a form with ones on the lower diagonal, so the total
number of parameters is n + (n2 − (n− 1)) = n2 + 1.

Lecture 2 (1 hour)
June 11th, 2012 The example is hard also because of the high number of parameters. It

turns out that this is the situation for almost all quivers.

2.11 example. The classification problem for the quiver of the previous exam-
ple can be embedded into the classification problem for almost all quivers. For
example, the problem for the quiver (where the number in parenthesis is the
“multiplicity” of the edge, that is, the number of times it appears in Q1)

• •
(2)

can be solved, while

• •
(3)

cannot because if the two spaces have the same dimension, we can change
bases so that one map is the identity; then the other two maps give precisely
the same situation as before.

2.12 example. Let us consider the quiver

•

• • . . . •

with n source vertices. If n = 1, we are in the case A2, so the classification
problem can be solved; so it is with n = 2 or n = 3, where we have A3 or
D4; with four we have D̃4, that can also be solved with some additional work.
But in the case with five spaces below, we can decide to put the same vector
space V as the sources and V2 as the target; we can then set the maps to be,
respectively, (id, id), (id, 0), (0, id), (id, ϕ), (id, ψ). Then the two maps ϕ and
ψ gives the embedding of the quiver with one vertex and two loops.

2.13 example. Consider the quiver

• • . . . •

it is of type An, so by Gabriel’s Theorem there are only discrete invariants.
Indeed, the firsts are the dimensions of the spaces; then of course there are
the ranks of the maps, but also the ranks of all the compositions. One can
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prove that these are all the discrete invariants one needs, even if proving this
with rows and columns operations is not easy even in the case of n = 3.

2.1 The path algebra

2.14 theorem. The category repk Q is equivalent to the category mod kQ of mod-
ules over the algebra kQ (the path algebra of Q) of finite dimension.

2.15 definition. Let Q be a quiver; kQ as a vector space is spanned by paths
in the quiver Q (in order to have a unital algebra, there must be also the paths
of length zero starting from each vertex); the multiplication of two paths is 0 if
the paths cannot be composed, whereas it is the concatenation if the first path
ends where the second starts. This makes kQ an associative algebra with unit
(given by the sum of all length zero paths).

This hints to another reason to consider only finite graph: otherwise we
would have formal problems defining the unit of kQ.

2.16 example. If Q is a vertex with a loop, then kQ = k[T]. If we have two
loops we do not get polynomials in two variables but the free algebra in two
generators, k〈X, Y〉. If Q is

• • . . . •

then kQ is the algebra of lower triangular matrices.

How does one associate a left module over kQ to a representation of Q? As
a k-vector space, the module M is the direct sum of all vector spaces involved,
that is,

M :=
⊕
i∈Q0

Vi .

Since the path algebra is generated by the path of length 0 or 1, we can define
the action of kQ on M just specifying the actions of these paths. A path of
length zero starting from the i-th component acts by selecting the i-th compo-
nent, that is

(v1, . . . , vk) 7→ (0, . . . , 0, vi, 0, . . . , vi) ;

instead, α : i → j acts on M mapping the component Vi to Vj via Vα and
putting 0 everywhere else, that is

(v1, . . . , vi, . . . , vj, . . . , vk) 7→ (0, . . . , 0, . . . , 0, α(vi), 0, . . . , 0) .

This defines the functor on objects, and one would have to check that this
definition “extends” to morphisms, and that it is an equivalence. To produce
an inverse, one uses the actions of the length zero paths to split the module
in the Vi components, and then uses the length one paths to extract the linear
maps.
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2.17 example. As said before, the path algebra of

• •

is the algebra of lower triangular matrixes, 2× 2, where the element in position
(i, j) corresponds to the path from i to j; if we have a representation f : V →W,
the corresponding module M is V ⊕W, and the action of

( a 0
b c
)

on ( v
w ) is

just the multiplication of matrices, provided that every time we use the (2, 1)
element we apply f to v:(

a 0
b c

)
·
(

v
w

)
:=
(

a · v
b · f (v) + c · w

)
.

The equivalence between repk Q and mod kQ is very important, because it
tells us that all general results for modules over rings holds also for represen-
tations of quivers.

For example, the Jordan-Hölder Theorem, translates to the fact that all
representations V of Q admit a filtration V = V0 ⊇ V1 ⊇ · · · ⊇ Vn = 0 such
that Vi−1/Vi is simple, that is, it does not have subrepresentations.

Another example is the Krull-Schmidt Theorem, that states that V can be
written as

⊕n
i=1 Ui, where Ui are indecomposable representations, that is, cannot

be written as X ⊕ Y for X, Y 6= 0. Moreover, V is indecomposable if and only
if End(V) is a local ring.

Also, all the machinery of homological algebra can be used, because it is
available for the module category that has enough projective.

2.18 definition. For every i ∈ Q0, let Pi be a representation of Q (possibly
infinite dimensional), defined letting (Pi)j be the vector space generated by
paths from i to j (note that the vector space (Pi)j has infinite dimension when
there are cycles between i and j); define also, for α : j → k, (Pi)α composing a
path from i to j with the arrow from j to k.

Since kQ, can be viewed as a module over kQ, it is also a representation.
One can prove that it decompose as the sum of all Pi, and this proves that the
Pi are projective. In particular, we obtain Hom(Pi, V) ∼= Vi.

There is a standard projective resolution of a representation V. The first
step is

⊕
i∈Q0

Pi ⊗k Vi → V, where the tensor product means taking as many
copies of Pi as the dimension of Vi. The sum is a finitely generated sum of
projective, so it is projective. The surprising part is that the kernel of this map
is automatically projective and can be described as

⊕
α : i→j Pj ⊗ Vi. Summing

up, the standard projective resolution of V is

0→
⊕

α : i→j
Pj ⊗Vi →

⊕
i∈Q0

Pi ⊗k Vi → V → 0 .

As a corollary, the Ext groups of index at least 2 are trivial in repk Q (in a
similar way to what happens in the category of vector bundles on a smooth
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projective variety). Another corollary is that

χ(M, N) = dim Hom(M, N)− dim Ext1(M, N) = 〈dim M, dim N〉 ,

where 〈d, e〉 := ∑i∈Q0
diei −∑i→j diej is a non-symmetric bilinear form, called

the Euler form because it gives the homological Euler characteristic (the alter-
nating sum of Ext groups).

3 Geometric invariant theory for quiver representation

Lecture 3 (1 hour)
June 12th, 2012From now on we will work over an algebraically closed field k of characteristic

0. We also fix a dimension vector d ∈NQ0 (since there is just one vector space
of dimension di, we can think we have fixed vector spaces Vi for each i ∈ Q0).

We consider the affine k-space Rd(Q) :=
⊕

α : i→j Homk(Vi, Vk). This is a
space of parameters for all quiver representations of Q. The group Gd :=
∏i∈Q0

GL(Vi) acts on Rd(Q) via (gi)i · (Vα)α := (gj ◦ Vα ◦ g−1
i )α : i→j. This is a

linear action of a reductive algebraic group on an affine space. Recall that we
saw that if V and W were isomorphic representations, then we could write
W exactly as g · V for some g ∈ Gd. Hence, the orbits of Rd(Q) relative to Gd
correspond to the isomorphism classes of representations of Q with dim = d.

If we have a representation V, we write [V] for its isomorphism class and
OV for the orbit of V by Gd.

An orbit is always locally closed, so we can compute its codimension:

codimRd(Q)O(V) = dim Rd(Q)− dimOV =

= dim Rd(Q)− dim Gd + dim StabGd(V) =

= dim Rd(Q)− dim Gd + dim AutQ(V) =

= ∑
α : i→j

didj − ∑
i∈Q0

d2
i + dim AutQ(V) =

= dim AutQ(V)− 〈d, d〉 .

This is because an element g stabilizing V is an automorphism of V in the
category of quivers representations. Note how we started from a geometric
invariant (the codimension) and we could compute it using only some cate-
gorical objects: the automorphisms and the Euler form.

We also note that codimRd(Q)OV ≥ 1− 〈d, d〉. We can use this fact to prove
half of Gabriel’s Theorem. Assume that for all dimension vectors d, there exist
only finitely many isomorphism classes of representations of dimension vector
d. So, for every d, we have finitely many orbits in the space of orbits. But orbits
are locally closed, therefore they form a stratification of the space of orbits, and
this imply that there must be a dense orbit. That is, for every d, there exists
a V ∈ Rd(Q) such that OV ⊆ Rd(Q) is dense, hence of codimension 0. Thus,
for every d, 〈d, d〉 ≥ 1 by the computation of the codimension of an orbit. The
quadratic form q(d) := 〈d, d〉 is then positive definite, and by the theory of
quadratic forms, Q must be a disjoint union of Dynkin diagrams.

Of course, from the point of view of moduli of representations, the quivers
that are union of Dynkin diagram are the most boring, because the associated
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moduli space is a union of points. In all other cases, the moduli space must
be the orbit space of Rd(Q) with respect to Gd. The only problem is that, to be
sure that such a quotient exists as a geometric object, we need to use geometric
invariant theory.

3.1 Summary of GIT

We will assume the setting of our moduli problem, so we will consider a linear
action of a reductive group G on a vector space X.

The basic idea is to find a variety whose functions are the invariant func-
tions k[X]G. Hilbert proved that this ring is finitely generated, so it quali-
fies to be the coordinate ring of some variety X//G := Spec k[X]G. Since
k[X]G ⊆ k[X], taking the dual we have a morphism π : X → X//G. It sat-
isfies several properties that are natural for quotients:

• universal property: for every morphism ϕ : X → Y that is G-invariant,
there exists exactly one way to split this morphism through π;

• surjectivity;

• each fiber of π contains a unique closed G-orbit (if one orbit is in the clo-
sure of another, we cannot expect that a morphism is able to distinguish
between them);

• closed k-points of X//G corresponds to closed k-orbits of X.

This was a summary of pre-Mumford GIT. Now, what we would like is for
π to actually separate all orbits. As said before, the only way to do this is to
restrict our space X to Xst, the stable locus, that is, the locus of points x ∈ X
such that StabG(x) is finite. If we restrict to Xst, then the map π actually has
one orbit per fiber.

3.1 example. Suppose that Gm acts on A2 as t · (x, y) := (tx, ty). The orbits
are all the rays (not closed) and the origin (closed), so A2//Gm = {0}. Instead,
the aim is to have A2//Gm = P1.

Lecture 4 (1 hour)
June 13th, 2012 Recall that to do Mumford-style GIT we need also a line bundle on the

space X with a G-linearization. This blows down to the choice of a character
χ : G → Gm, and we can define the set of χ-semi-invariant functions as

k[X]G,χ := { f : X → k | ∀g ∈ G, ∀x ∈ X, f (gx) = χ(g) f (x)} .

The problem is that if we multiply two χ-semi-invariant functions we get a
χ2-semi-invariant function, and so k[X]G,χ is not a ring. What we can do is
to take all χn-semi-invariant functions, for every n, and construct a graded
ring k[X]Gχ :=

⊕
n≥0 k[X]G,χn

. Our hope is that the Proj of this graded ring is a
sensible quotient. We need some other definition: Xχ−sst is the locus of points
x ∈ X such that f (x) 6= 0 for some f ∈ k[X]Gχ of positive degree; inside Xχ−sst

we define Xχ−st as the locus of points with the additional condition of having
a finite stabilizer. Both the semi-stable locus and the stable locus are open.
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From now on, we will consider not X but Xχ−sst, so if we say “closed orbit”
it will mean “closed in Xχ−sst”.

The situation is the following

Xχ−st Xχ−sst X

Xχ−st/G Xχ−sst//G X//G

Proj k[X]Gχ Proj k[X]Gχ Spec k[X]G

open

π

open projective
ππ

open

where the morphism Xχ−sst//G → X//G is projective because the latter’s ring
is the degree 0 of the former’s ring. If the action of G on the stable locus is
not only with finite stabilizers but also free, then Xχ−st//G is smooth and the
map π over it is a G-principal bundle.

3.2 example. In the case of A2 with the action of Gm by dilations, we can
choose the trivial character χ = id, and we obtain k[A2]

Gm
χ = k[X, Y], where

X and Y are χ-semi-invariant functions of degree 1. It’s Proj is of course P1.
We can check also that the semi-stable locus is A2 \ {0}.

3.3 example. Look at the actions of Gm on A2 by t · (x, y) := (tx, ty−1), where
the generic orbit is an hyperbola, and we have three special orbit: the axes
and the origin. Choosing the identity character, one sees that the stable locus
consists of all the hyperbolas and the punctured x axis; choosing instead the
character t 7→ t−1, the semi-stable locus comprises all hyperbolas and the
punctured y-axis. This shows that the semi-stable locus is not intrinsic: we
have to make a choice, and this choice is summed up in the choice of the
character.

3.4 example. We can define grassmannians using GIT by acting with GLk on
Mn×k (with k ≤ n) and using the determinant as the character. The quotient
is the grassmannian G(k, n).

3.2 Application to the action of Gd on Rd(Q)

Recall that we associated to the class of a representation [V] the orbit OV . The
problem is that if we apply GIT directly, we obtain stabilizers of positive di-
mension, hence the stable locus would be empty by definition. But there is a
one dimensional family of elements of Gd acting trivially on Rd(Q): the ele-
ments that rescale the bases of all vector spaces by the same amount. Therefore
we can consider PGd as Gd modulo the scalars. Since StabGd(V) = Aut(V),
we have that StabPGd(V) = Aut(V)/Gm.

Now, the only decent characters χ : PGd → Gm are the ones associating to
the matrices gi the product of their determinants to some power ϑi: χ((gi)i) =

∏i det(gi)
ϑi . But, to make this well defined for PGd, there is the additional

condition that ∑ diϑi = 0. We will write χϑ for the character χ.

9
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Applying the GIT theory we get

Mϑ−st
d (Q) Mϑ−sst

d (Q) Mssimp
d (Q)

Rd(Q)χϑ−st/PGd Rd(Q)χϑ−sst//PGd Rd(Q)//PGd

open projective

As before, the last term is affine, and the first is smooth because the sta-
bilizer is Aut(V)/Gm, that is a connected, zero-dimensional group inside
End(V)/Gm: stabilizers are trivial.

We used the index “semi-simple” for the affine quotient. This is because
one could prove that the closed orbits correspond to representations V that
can be decomposed in a sum of irreducible representations, that is, V is
semi-simple. That is, Mssimp

d (Q) parametrizes semi-simple representation of
Q (with dim = d).

If Q has no oriented cycles, the only irreducible representations are the Si.1

This implies that the only closed orbit in Rd(Q) is {0} and Mssimp
d (Q) = {pt}:

it is a situation similar to the one of A2, where we had only one closed orbit
(the origin), that “masked” all other interesting non-closed orbit.

In the case Q has oriented cycles, a theorem of Le Bruyn-Procesi states that
k[Rd(Q)]Gd is generated by the traces of the compositions of the maps along
the oriented cycles. More precisely, by functions of the form V 7→ Tr(Vα1 ◦Vαn ◦
· · · ◦Vα2 ◦Vα1) for a cycle α1 ◦ αn ◦ · · · ◦ α1. The problem is that the theorem is
non-constructive, hence we don’t know how many of such trace functions we
need to take to generate the whole ring (and which are the relations amongst
the generators).

3.5 example. Consider the quiver Q with one vertex and two loops, then
Mssimp

d (Q) = A5 when d = 2, and the generators of the ring are the traces
of A, B, AB, A2, B2. If d = 3, we have 10 traces with one relation. If we have
d = 3 with three loops, one needs to take 48 traces and there are 365 relations.

4 Slope stability

Lecture 5 (1 hour)
June 14th, 2012 We have an interpretation for the quotient Mssimp

d (Q) (that is, it parametrizes
semi-simple representations), but we still have to discover interpretations for
the two spaces Mϑ−sst

d (Q) and Mϑ−st
d (Q). There is a nice interpretations analo-

gous to the one found in moduli spaces of vector spaces, using slope stability.
We define the rank of a dimension vector as the sum of all dimensions of

the vector spaces, and we choose an arbitrary degree function deg : ZQ0 → Q,
which is simply a linear function. In the setting of vector bundle on curves we
have a natural degree function, here we do not.

Given a degree function, we can define the slope function as

µ : NQ0 \ {0} → Q

1Maybe the Pi?

10
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by µ(d) = deg d/ rk d. We have to exclude 0 because its rank is zero.

4.1 definition. A quiver representation V is called semi-stable if µ(dim U) ≤
µ(dim V) for every U ( V nonzero. It is called stable if the same holds with a
strict inequality. V is called poly-stable if V is a direct sum of stable represen-
tations with the same slope.

Inside repk Q one can find the subcategory of semi-stable representations
of slope µ, and it is an abelian subcategory, meaning that, for example, kernels
and cokernels are inside the subcategory. Moreover, inside it, the stable objects
are precisely the irreducible one with respect to the subcategory.

Given a dimension vector d, we can define ϑi := deg(d)− deg(ei) · rk(d)
(where ei is the dimension vector (0, . . . , 0, 1, 0, . . . , 0)). Using this ϑ, we have
∑ ϑidi = 0 as requested to let the action descend to PGd. This is a natural
choice for any given degree function deg and dimension vector d.

4.2 theorem (King). A representation V is in Rχϑ−sst
d (Q) if and only if V is semi-

stable; V ∈ Rχϑ−st
d (Q) if and only if V is stable; OV ⊆ Rχϑ−sst

d (Q) is closed if and
only if V is poly-stable.

Note that on the right sides we used the notion of stability, that is relative to
a degree function. On the left, this choice is hidden in the ϑ, that is constructed
to adapt to the chosen degree function. Therefore, from now on we drop ϑ
from the notation.

4.3 corollary. The space Msst
d (Q) parametrizes isomorphism classes of poly-stable

representations with dim = d; the (smooth) space Mst
d (Q) parametrizes isomorphism

classes of stable representations with dim = d.

We have no direct way to say that a space Mst
d (Q) is nonempty: there

are some criterions, but they are highly recursive criterions, hence not very
effective. Let us assume to have Mst

d (Q) nonempty, then we could ask what
is its dimension. Of course, dim Mst

d (Q) = dim Rd(Q) − dim PGd, that we
already seen being equal to 1− 〈d, d〉. A necessary condition for the moduli
space to be nonempty, is then that 〈d, d〉 ≤ 1. This in particular shows that for
Dynkin quivers, being the Euler form positive definite, the dimension is 0 (or
the moduli space is empty).

What happens when we change the degree function? For example, let Q
be the quiver

• •
(m)

and let the dimension vector be d := (d1, d2). The degree is a linear function,
hence of the form deg(d) := a1d1 + a2d2 with ai ∈ Z. If we plot the coefficients
ai in a Z2, then we can identify a locus, (a1 = a2) on which Rχϑ−sst

d (Q) = {0},
hence Msst

d = {pt}. If we choose a degree function above the diagonal, namely
with (a2 > a1), then Rχϑ−sst

d (Q) = ∅, except for d1d2 = 0, for which the

11
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moduli space is anyway a single point. In the other directions instead we have
more interesting results. Here a representation with maps fi is (semi-)stable if
and only if for every nonzero U ( V we have dim ∑m

i=1 fi(U) ≥ dim U · dim W
dim V .

This happens when the linear maps fi are in some sense “orthogonal” to each
other, in particular it is a genericity condition that is open. This indeed is the
so called Kronecker moduli space, studied by Drezet. But even in this case it
is not easy to decide whether the stable locus is nonempty.

Note that for this quiver, a subrepresentation is a choice of vector spaces
UV ⊆ V and UW ⊆ W such that fi|UV ⊆ UW but UW must contain also the
sum of all images: UW ⊇ ∑ fi(UV).

4.4 example. We look at moduli spaces of small dimension. For example, we
choose the quiver

2

1 1 1 1

with the dimension vector specified in the diagram. A representation of this is
a configuration of 4 vectors in a 2-dimensional vector space, or passing to the
projective spaces, 4 points in P1. The moduli space is indeed parametrized by
the cross-ratio: for example, with deg(s1, . . . , s4, t) = −e, Msst

d (Q) ∼= P1, and
Mst

d (Q) = P1 \ {0, 1, ∞}.

4.5 example. In the case of five maps with a common target, the stable or
semi-stable moduli space is P2 blown up in four points. If the quiver and
dimension vector is

1

1 1 1

1

then the moduli spaces (both stable and semi-stable) are P2 blown up in three
points.

4.6 example. The quiver and dimension vector 1
(m)−−→ k has moduli spaces

G(m, k); 2
(3)−→ 3 admits a Gm action with 13 fixed points, and for both the

stable and semi-stable moduli spaces coincide.

4.7 conjecture. If Mst
d (Q) = Msst

d (Q), then it admits an affine pairing.

5 Cohomology of quiver moduli

Lecture 6 (1 hour)
June 14th, 2012 We will assume that Q has no oriented cycles, and that d is deg-coprime, that

is, for every nonzero e < d, µ(e) 6= µ(d) (in other words, gcd(di) = 1 and

12
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degree is “generic”, avoiding finitely many hyperplanes). For example, in the

case • (m)−−→ •, the only reasonable degree function is deg(d1, d2) = d1, and we
also require that gcd(d1, d2) = 1.

These requirements implies that Md(Q) := Mst
d (Q) = Msst

d (Q), because
the equality in the semi-stability condition cannot be reached under these
conditions. In particular, Md(Q) is smooth because the stable locus is smooth,
and is projective because the semi-stable locus is projective.

5.1 Harder-Narasimhan stratification of the unstable locus

5.1 lemma (Harder-Narasimhan). For all representations V, there exists a unique
filtration 0 = V0 ( V1 ( · · · ( Vs = V such that all quotients Vi/Vi−1 are
semi-stable and the slopes are decreasing, that is, µ(V1/V0) > µ(V2/V1) > · · · >
µ(Vs/Vs−1).

The surprising fact about this lemma is that the filtration respecting these
properties is unique. Moreover, with some care it can be done in such a way
that it also respect functoriality (that is, in such a way that it is preserved by
morphisms). Thanks to the uniqueness we can define the following.

5.2 definition. The Harder-Narasimhan type of a representation V is the list
(dim V1/V0, . . . , dim Vs/Vs−1) ∈ (NQ0)

s.

Obviously, if (d1, . . . , ds) is a HN type, then ∑ di = d (this implies that
after fixing the dimension vector, there are only finitely many HN types for
that dimension vector). Also, by definition, µ(d1) > · · · > µ(ds). Moreover, if
V is semistable, then the HN filtration is 0 ( V. The HN type is therefore (d),
and this condition is equivalent to semi-stability.

Because of the finiteness condition, we can stratify the space Rd(Q) by the
HN type:

Rd(Q) =
⊔

d?=(d1,...,ds),
∑ di=d

Sd? =
⊔

d?=(d1,...,ds),
∑ di=d

{V ∈ Rd(Q) | HN type of V is d?} .

It is a finite stratification, and S(d) corresponds to the χϑ-semi-stable locus,
that is open in Rd(Q). Moreover, since Rd(Q) is a vector space, we know that
it is the only open stratum.

It would be great if the stratum S(d1,...,ds) was related to ∏s
k=1 Rχϑ−sst

dk (Q),
that is, the “boundary” strata were constructed starting from moduli of smaller
representations. What happens is slightly more complicated, that is we have

S(d1,...,ds)
∼= Gd ×Pd?

B ,

where B is a vector bundle over ∏s
k=1 Rχϑ−sst

dk (Q). The group Pd? is a parabolic
subgroup in Gd with Levi factor ∏s

k=1 Gdk (that is, we are taking upper tri-
angular block matrices with diagonal blocks equal to Gdk , inside Gd that is a
product of GL groups).

13
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Note that we are not stratifying the moduli space directly, we are strat-
ifying the big parameter space Rd(Q). This does not give directly ways to
decompose the moduli space in a useful way to compute invariants.

Consider K0(Var /k) that is the set of all isomorphism classes of quasi-
projective varieties X up to relations of the form [X] = [A] + [U] whenever
A ⊆ X is closed and U = X \ A. We put an operation on this set, that is
[X] · [Y] := [X × Y], that makes it into a ring. We can define operators on
this ring together with the formal sum. To keep things simple, we consider
k = C; then for example, we can define χ : K0(Var /C) → Q sending [X]
to χc(X), the Euler characteristic with compact support. This is known to
respect the relation for which we quotiented, so it is well defined. Another
operator we can define on K0(Var /C) is the virtual Poincaré polynomial, that
is a ring homomorphism K0(Var /C) → Q[q] sending [X] with X smooth
and projective to ∑i≥0 hi(X, Q)qi. It can be proved that there is only one ring
homomorphism with this behaiour for smooth projective varieties. Another
possibility is to count points over finite fields, that respect the relation and is
multiplicative with respect to the cartesian product.

What is the class of Rd(Q) in K0(Var /k)? Since it is an affine space, it is
just [L]dim Rd(Q), the class of a line with the appropriate exponent. But we have
the HN filtration on Rd(Q), so

[Rd(Q)] = [Rχϑ−sst
d (Q)] + ∑

d? proper HN type
[Sd? ] ,

and we can express the classes in the sum using the fornula saw before:

[Rd(Q)] = [Rχϑ−sst
d (Q)] + ∑

d? proper HN type

[Gd] · [∏s
k=1 Rχϑ−sst

dk (Q)] · [L]dim B

[Pd? ]
.

In the end we get the motivic HN recursion:

[Rsst
d (Q)]

[Gd]
=

[Rd(Q)]

[Gd]
−∑

d?
[L]dim B

s

∏
k=1

[Rsst(Q)
d ]

[Gdk ]
.

This is a completely formal relation that we can use to compute the motive of
the moduli space Md(Q), in terms of things that are either motives of smaller
dimensional moduli of representations, or known such as affine spaces.

If d is deg-coprime, then, for example, [Rsst
d (Q)]/[Gd] and [Md(Q)]/[Gm]

have the same virtual Poincaré polynomial.

6 Non-commutative algebraic geometry

Lecture 7 (1 hour)
June 15th, 2012 There are two approaches when you decide to do non-commutative alge-

braic geometry: the small scale approach is when you actually take non-
commutative algebras, but such that they are of finite rank over their center
(so that you can hope that many properties extends); the large scale approach
is when you instead take “very” non-commutative algebras, for example the

14
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free algebra A := k〈x1, . . . , xn〉. Here we will follow the second approach.

6.1 example. We define Am := Specm k[x1, . . . , xm], where Specm is, set-
theoretically, the set of maximal, two-sided ideals. The non-commutative anal-
ogous is NAm := Specm k〈x1, . . . , xm〉. Inside it, we can find the cofinite
part, that is Specm cofin k〈x1, . . . , xm〉 = {m | dimk k〈x1, . . . , xm〉/m < ∞}.
of course in the commutative case this is equivalent to Specm. We attach to
these spaces a topology that is constructed in the same way as the Zariski
topology.

The nice thing is that we can construct the cofinite part using quivers.
The following is a reinterpretation of a theorem initially stated in a different
language.

6.2 theorem (Artin, 1969). We have

Specm cofin k〈x1, . . . , xm〉 ∼=
⋃

d≥1

Msimp
d (m loops) .

In the theorem, Msimp
d (Q) is the open part of Mssimp

d (Q) corresponding to
Rst

d (Q). For example, in the case of a single vertex with m loops, we have that
the simple representations are the ones where there is not a common invariant
subspace for all the linear maps. In particular, for m = 1 there are no simple
representations.

The correspondence in the theorem sends the class of V = (ϕ1, . . . , ϕm)
to its annihilator, Ann(V) = {P ∈ k〈x1, . . . , xm〉 | P(ϕ1, . . . , ϕm) = 0}. We
can now reformulate the theorem of Le Bruyn-Procesi and see the genera-
tors inside the non-commutative ring: we can see Specm cofin k〈x1, . . . , xm〉 in-
side Tr C〈x1, . . . , xm〉, the set of trace-like functions, that is of linear functions
t : C〈x1, . . . , xm〉 → C such that t(PQ) = t(QP). This embedding is realized
sending the representation V to the map P 7→ Tr P(ϕ1, . . . , ϕm).

Differently from the usual algebraic geometry where the affine space is one
of the simplest object, in the non-commutative case the affine space is already
very wild. For example, a notorious hard problem in quiver representations is
the rationality of Mssimp

d (Q): this problem can be reduced to the case where
Q consists of one vertex with m loops, and indeed it is not even known if the
non-commutative affine space is rational.

6.3 example. The scheme Hilbd(A
m) is the space parametrizing zero dimen-

sional subschemes of Am of length d. These are in turn in a correspondence
with ideals I ⊆ k[x1, . . . , xm] such that dimk k[x1, . . . , xm]/I = d. In the non-
commutative case, the analogous is N Hilb(m)

d , the space of left ideals I in
k〈x1, . . . , xm〉 such that dimk k〈x1, . . . , xm〉/I = d. This quotient is no longer a
ring but only a vector space (because we asked for left ideals), but we actually
just care about the dimensions. In reality, the left ideal are choosen because
they are easier to figure out with respect to the more natural definition with
two-sided ideals.
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We define a quiver Q with a map between two vector spaces of dimension
1 and d, with the target having also m loops. The dimension vector is d = (1, d)
and we choose the degree to be deg(a, b) = a. Choosing a representation is
the same as choosing a vector v in the second space plus m linear maps. It is
(semi-)stable if and only if v is a cyclic vector with respect to the other maps,
that is, applying all possible polynomials of ϕ1, . . . , ϕm to v, we can arrive to
any vector.

6.4 lemma. The moduli space Mst
d (Q) is isomorphic to N Hilb(m)

d . We associate to
a point [(v, ϕ1, . . . , ϕm)] the annihilator {P | P(ϕ1, . . . , ϕm)(v) = 0}. In the other
direction, we associate to a left ideal I the point [(1 ∈ A/I, x1, . . . , xm)], where xi are
the generators of the ideal.

The advantage in the first case was that we got natural coordinates in
Msimp

d (Q) using the embedding in the trace-like function using the Le Bruyn-
Procesi Theorem. In this case, the advantage is that we can apply HN recur-
sion to get a recursive formula for the Betti numbers of N Hilb(m)

d . We can
construct a two variables generating function putting together all Betti num-
bers of N Hilb(m)

d :

F(q, t) = ∑
d≥0

q(m−1)(d
2) ∑

i
dim Hi(N Hilb(m)

d , Q)q−i/2td .

The twist q−i/2 comes from the fact that these spaces have no odd cohomology.

6.5 theorem. The function F(q, t) is determined by the following algebraic q-different
functional equation:

F(t, q) =
1

1− F(q, qt)F(q, q2t) · · · F(q, qm−1t)
.

Using this equation one can prove things like a formula for the Euler char-
acteristic:

e(N Hilb(m)
d ) =

1
(m− 1)d + 1

(
md
d

)
.

Let us consider ∑n≥0 e(Hilbn(Ai))tn; when i ∈ {2, 3}, we can rewrite this
as ∏i ≥ 1(1− ti)−j where j = 1 for i = 2 and j = i for i = 3. We can do

the same for N Hilb(m)
d , where F(1, t) = ∏i≥1(1− ti)−i DT(m)

i , where DT(m)
i is

the Donaldson-Thomas invariant of the Hilbert scheme, for which it exists a
formula using the formula for the Euler characteristic.
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